Stability and $\mathrm{P}-\mathrm{V}-\mathrm{T}$ equation of state of $\mathrm{MgAl2O} 4$ calcium ferrite-type structure

\# Yuichiro Sueda[1]; Tetsuo Irifune[2]; Takeshi Sanehira[2]; takehiro kunimoto[3]; Toru Shinmei[1]; Daisuke Yamazaki[2]; Toru Inoue[2]; Ken-ichi Funakoshi[4]; Akifumi Nozawa[4]

[1] GRC, Ehime Univ; [2] GRC, Ehime Univ.; [3] GRC,Ehime Univ.; [4] JASRI

Al-rich phase with MgAl 2 O 4 calcium ferrite (CaFe 2 O 4) type structure is one of the major minerals in mid-ocean ridge basalt (MORB), and taken to lower mantle with subducting oceanic crust. Thus, it is important to determine the stability and the equation of state of $\mathrm{MgAl2O} 4$ calcium ferrite type structure for understanding the geodynamics. In this study, we conducted in situ X-ray observations to determine the phase relations and the thermoelastic parameters in MgAl2O4 up to 45 GPa and 2500 K .

The experiments were conducted using Kawai type apparatus combined with synchrotron radiation, installed at the BL04 beamline, SPring-8. We used sintered diamond and c-BN as second anvils ($\mathrm{L}=14 \mathrm{~mm}$), and conducted the experiments up to 45 GPa and 2500 K . The starting material was used $\mathrm{MgAl2O} 4$ spinel mixed with gold powder ($10: 1 \mathrm{wt} \%$) for pressure measurement. Pressure was estimated from the equation of state of gold reported by Anderson et al. (1989). P-V-T data were collected after synthesized at 1800 K and the stability field in CaFe 2 O 4 type structure, and acquired at every 200 K upon decreasing temperature to the room temperature.

The experiments were conducted at $25-45 \mathrm{GPa}$ and to $2500 \mathrm{~K} . \mathrm{CaFe} 2 \mathrm{O} 4$ type structure was observed up to 45 GPa and at 1800 K . However, we could observe the phase transition to the unknown phase at 2100 K and 42 GPa . Furthermore, CaTi2O4 type structure was observed at 43.5 GPa and 2373 K . Thus, we expect to be the triple point at 43 GPa and 2000 K in MgAl 2 O 4 . The crystal structure of unknown phase was under analyzing.

The obtained $\mathrm{P}-\mathrm{V}-\mathrm{T}$ data at the room temperature were fitted by Birch-Murnaghan equation of state, and the bulk modulus and it""s pressure derivative were determined as $\mathrm{K} 0=211 \mathrm{GPa}, \mathrm{dK} 0 \mathrm{dP}=3.7$. We also analyzed the $\mathrm{P}-\mathrm{V}-\mathrm{T}$ data at high temperature to 1800 K under pressure, and determined thermal expansion coefficient at the ambient condition and the temperature derivative of the bulk modulus, $\mathrm{a} 0=2.3 * 10-5 \mathrm{~K}-1, \mathrm{~b} 0=1.9 * 10-8 \mathrm{~K}-2$, and $(\mathrm{dK} 0 / \mathrm{dT}) \mathrm{P}=-0.034 \mathrm{GPa} / \mathrm{K}$.

