Room: 202

Carbon and hydrogen isotope fractionation by methane production in co-culture between fermenters and hydrogenotrophic methanogens

Shohei Hattori[1]; Hiroyuki Kimura[2]; Hiroaki Nashimoto[3]; Keisuke Koba[4]; Keita Yamada[5]; Mikio Shimizu[6]; Hiroshi Watanabe[7]; Muneoki Yoh[8]; Naohiro Yoshida[9]

[1] Interdisciplinary Graduate School of Sci. and Eng., Titech; [2] Institute of Geoscience, Shizuoka University; [3] Geosciences, Shizuoka Univ.; [4] Tokyo University Agric Tech; [5] Environ. Chem. and Engr, Tokyo Tech.

; [6] Geosciences, Shizuoka Univ; [7] Tokyo Univ.Agri.Tech; [8] Tokyo Univ. Agri. Tech.; [9] IGSSE, Tokyo Institute of Technology

The sedimentary layer in the southern part of Japan is accretionary prism which includes enriched organic matters derived from sediment on oceanic plate. There is geothermal deep-aquifer in which a large amount of methane (CH_4) dissolved. Because of importance of CH_4 both as a greenhouse gas and as natural gas fuel, revealing the process of CH_4 production in the deep-aquifer is required. In our previous study based on 16S rRNA genes analyses, we had revealed that hydrogenotrophic methanogens and H_2 -producing fermentative bacteria are dominant in the deep-aquifer.

In this study, anaerobic enriched cultures with this groundwater amended with organic substrates which achieved co-cultures between fermentative bacteria and hydrogenotrophic methanogens and cultures with this groundwater under H_2+CO_2 (80:20, v/v) condition in which hydrogenotrophic methanogens produce CH_4 by CO_2 reduction were incubated at 55 and 65°C. Concentration of H_2 , CH_4 , and CO_2 were monitored by TCD-GC. In addition, $d^{13}C-CH_4$, $dD-CH_4$, $d^{13}C-CO_2$, and $dD-H_2O$ values were measured and carbon isotope fractionation factors (*alpha*(CO_2-CH_4) value) and hydrogen isotope fractionation factors (*alpha*_H value) were determined.

In these co-culture between fermentative bacteria and hydrogenotrophic methanogens, H_2 concentration increased at the initial phases, then decreased gradually, and kept low during CH₄ producing, indicating H₂ consumption by hydrogenotrophic methanogens to produce CH₄. *alpha*(CO₂-CH₄) values by these co-cultures were higher (more than 1.065) than that of the cultures under high concentration of H₂ + CO₂ (*alpha*-values were approximately 1.02). On the other hand, *alpha_H* values by these incubation experiments showed that hydrogen isotope fractionation decrease (*alpha_H* values increase) at lower H₂ concentration. We will discuss mainly the relationship H₂ concentration in the cultures and carbon and hydrogen isotope fractionation factors. Additionally, we will mention the comparison with other studies.