

AHW023-22

Room:102

Time:May 25 16:00-16:15

Helium isotopes and 36Cl in saline deep groundwater from the Osaka Basin, Southwest Japan

Noritoshi Morikawa^{1*}, Kohei Kazahaya¹, Masaaki Takahashi¹, Yuki Tosaki¹, Michiko Ohwada¹, Hiroshi Takahashi¹, Masaya Yasuhara¹, Harue Masuda²

¹Geological Survey of Japan, AIST, ²Dep. of Geosciences, Osaka City Univ.

Isotopic composition and concentration of helium and chlorine in groundwater are a useful indicator for identifying groundwater flow path and estimating a very old groundwater age. Morikawa et al. (2008) investigated the He isotopes in deep groundwater from the Osaka Basin, southwest Japan, in which unusual saline water containing upper mantle-like helium welled out (Especially in Arima and Ishibotoke area). Observed 3 He/ 4 He variation in deep groundwater was clearly related with the geological structure. The 3 He/ 4 He ratios decrease with increasing distance from the faults. It has been proposed a model that spatial distribution of 3 He/ 4 He ratio reflects the movement of fluids through the fault and following dissolution of crustal 3 He/ 4 He during groundwater flow. The amount of accumulated 3 He/ 4 He corresponds to the age for hundreds of thousands of years.

Chlorine-36 is a radioactive nuclide, which decays with a half-life of 301,000 years and is thus applicable to dating very old groundwater. Another possible application of this isotope is a method using subsurface produced 36 Cl to investigate the origin and evolution of saline water.

In this study, we investigated the distribution of 36 Cl/Cl ratio to examine the saline groundwater flow model inferred from the He results. Most of 36 Cl/Cl ratios in the deep groundwaters from the Osaka Basin (4.1-25.6 x 10^{-15}) are higher than those in Arima-type thermal water and sea water. These high ratios are not due to mixing of modern surface water which contains bomb- 36 Cl, but an incorporation of subsurface products of nucleogenic 36 Cl during deep groundwater flow, since the data points are significantly plotted above the mixing line between modern meteoric water and Arima-type water. Spatial distribution of these data shows that the 36 Cl/Cl ratios increase straightforward towards the middle part of the basin. This trend is consistent with observed decreasing 3 He/ 4 He ratio toward the middle part of the basin. Considering a concurrent change in 36 Cl/Cl and He concentration, increasing 36 Cl/Cl ratio reflects increase of groundwater residence time towards the basin and thus shows groundwater flow direction.

Keywords: groundwater, helium, chlorine-36, groundwater age, Osaka Basin