

AHW023-P15

Room:Convention Hall

Time:May 25 16:15-18:45

Application of ³⁶Cl to deep fluid systems in Japan: Implications for the sources and residence time of chlorine

Yuki Tosaki^{1*}, Noritoshi Morikawa¹, Kohei Kazahaya¹, Michiko Ohwada¹, Masaya Yasuhara¹, Hiroshi Takahashi¹, Masaaki Takahashi¹, Akihiko Inamura¹, Yoichi Oyama¹

¹Geological Survey of Japan, AIST

This study applied the long-lived radionuclide ³⁶Cl to better elucidate the sources of chlorine in deep fluids in Japan. Several regions with different tectonic/geological settings were selected for the collection of deep fluid samples from hot spring wells: e.g., a coastal sedimentary basin in Aomori, surroundings of volcanic calderas in Hokkaido, and vicinity of tectonic faults in western Japan. Concerning the samples obtained from a coastal sedimentary basin, the ³⁶Cl/Cl ratios mostly fall on the seawater-shallow groundwater mixing trend line, with a few samples deviating upward possibly due to the build-up of nucleogenic ³⁶Cl in the subsurface. The calculated ³⁶Cl/Cl ratios of assumed seawater fractions were positively correlated with crustal ⁴He concentrations, associated with increasing residence time of the fluids in the subsurface. This trend suggests that the source of deep fluids in this area is probably old seawater. In the case of the samples nearby major tectonic faults, the delta ¹⁸O-delta D relationship depicts a shift to Arima-type thermal brine (Matsubaya et al., 1973) or magmatic water (Giggenbach, 1992). These samples tend to show low ³⁶Cl/Cl ratios close to the seawater value (1-2 x 10⁻¹⁵) especially for the samples with high ³He/⁴He ratios similar to that of the upper mantle. It implies a deep-seated source of these fluids, such as mantle- or magma-derived components, and also suggests a relatively short residence time in the crust without significant production of nucleogenic ³⁶Cl.

References

Giggenbach, W.F. (1992): Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. *Earth and Planetary Science Letters*, **113**, 495-510.

Matsubaya, O., Sakai, H., Kusachi, I. and Satake, H. (1973): Hydrogen and oxygen isotopic ratios and major element chemistry of Japanese thermal water systems, *Geochemical Journal*, **7**, 123-151.

Keywords: deep fluid, chlorine, origin, residence time, chlorine-36