Unveil the Depth of Methanogenesis in Deep Subsurface and Microbial Ecology

KATO Kenji

Faculty of Science, Shizuoka University

Bubbles of methane in the ground water coming up from deep subsurface in a sedimentary rock area of Hokkaido, North Island of Japan were shown biological contribution to their origin from stable isotope signature of delta-^{13}C-CH_4. Gene sequence of archaeal small subunit rRNA derived from 500 m water showed an existence of various methanogenesis archaeal Genus there. Incubation experiments carried out for the subsample of 500 m ground water revealed that these archaeal community exhibited methanogenesis activity under the in situ or somewhat higher temperature of 30 to 40/45 C with anoxic condition, but not at neither 20 C nor 50 C. Similar incubation applied to the ground water of 140 m deep did not show any methanogenesis under even absolute anoxic condition so far examined for 90 days at both in situ and higher temperature as 16 C and 30 C, respectively, though the stable isotope signature of delta-^{13}C-CH_4 in the bubbles obtained from this depth was as low as -57 per mil suggesting methane was biogenic and methanogenesis archaeal genes were found.

Keywords: Subsurface, Methanogenesis, Microbial Ecology