In order to understand generation mechanisms of day-to-day Sq current variations for space weather study, we tried to visualize (1) daily Sq equivalent currents estimated by MAGDAS/210 MM data, (2) daily Sq patterns obtained by the empirical model (Yamazaki et al., 2010), and (3) the subtraction of (1) - (2), i.e. the daily disturbance driven by changes in the solar wind and atmospheric neutral wind.

The daily Sq currents from 4 January to 31 December 2008, were obtained from magnetic data at 16 stations of MAGDAS/CPMN project, Space Environment Research Center, Kyushu University. In the present paper, we investigated the relationship between the interplanetary electric field (i.e. $E_y = -V_{sw} \times B_z(IMF)$) and (3) the subtracted Sq currents in the magnetic equatorial region.

It is found that about 20% of 363 days the subtracted Sq currents at the magnetic equator showed a good correlation with the interplanetary magnetic field (IMF), i.e. the eastward EEJ was enhanced during the negative IMF B_z component, while the westward EEJ appeared during the positive IMF B_z component. On the other hand, 66% of 363 days we could not find a good relation between the subtracted Sq current near the dip equator and the IMF B_z variations, indicating the possibility of a coupling mechanism with the atmospheric neutral wind.

We acknowledge Mr. Takashi Nosakon (Ashibetsu; ASB), Prof. Shoichi Okano (Onagawa; ONW), Mr. Kenichi Isami (Amami; AMA), prof. Tiger Liu (Hualien; HLN), Dr. Roland Otaduy (Cebu; CEB), Mr. Suhardjono (Manado; MND & Kupang; KPG), Ms. Clara Yatini (Pare Pare; PRP), Dr. Robert Eager (Darwin; DAW), Dr. R. Marshall (Cooktown; CKT & Townville; TWV & Camden; CMD), Prof. Mcphail (Rockhampton; ROC), Dr. N. Prestage (Culgoora; CGR), and Mr. Willmott (Melbourne; MLB) for supporting MAGDAS project.

Keywords: Sq, EEJ