Simultaneous ground-geosynchronous observation of Pi 2 pulsations associated with the substorm current wedge

Teiji Uozumi1*, Kiyohumi Yumoto1, Kiyokazu Koga2, Takahiro Obara2, B. M. Shevtsov3, S. I. Solovyev4, Akihiro Ikeda1, Shuji Abe1, Akimasa Yoshikawa5, Hideaki Kawano5

1SERC, Kyushu Univ., 2JAXA, 3IKIR, 4IKFIA, 5Kyushu University

The formation of a substorm current wedge (SCW) is one of the fundamental processes in the expansion phase of the magnetospheric substorm [e.g. McPherron et al., 1973]. A Pi 2 magnetic pulsation always occurs at the expansion onset [Saito, 1969]. High- and mid-latitude Pi 2s in the $D$ (east-west) component, which are observed away from the auroral breakup region, have been understood as an oscillation of the field-aligned currents (FAC) associated with SCW [Lester et al., 1983; Uozumi et al., 2009]. Sakurai and McPherron [1983] examined Pi 2s that observed at the geosynchronous orbit, and presented that the initial perturbation in the azimuthal component of a Pi 2 is in the same sense as the perturbations caused by the SCW. Uozumi et al. [2010] found that the ground Pi 2 timeseries had high coherencies with simultaneously observed AKR timeseries, regardless of whether the Pi 2 timeseries were associated with upward FAC or downward FAC; this fact suggests that the upward SCW and the downward SCW oscillated in a synchronized manner. This aspect was deduced from ground observations, and should be verified by a simultaneous observation on the ground and in the magnetosphere. In order to clarify the timing relation of Pi 2s that are associated with SCW oscillations, we made a comparative study by combining the ground and satellite data.

We analyzed simultaneous ground-satellite observation of Pi 2 pulsations at the ETS-VIII geosynchronous orbit (GGLon=146.0E) [Koga and Obara, 2008] and at MAGDAS/CPMN [Yumoto and the MAGDAS Group, 2006] high-, mid- and low-latitude stations, CST (GGLat.=68.5N, GGLon.=179.2E), ZYK (65.8N, 150.8E) and KUJ (33.1N, 131.2E). ETS-VIII was located in the geomagnetic southern hemisphere (GMLat = -12S), and a foot point of the magnetic field line is estimated as GGLat = 70.5N, GGLon = 152.9E by using Tsyganenko 96 model. The nearest ground station to the foot point was ZYK. We picked up Pi 2 events that exhibited a high coherency in the waveform among the ground and satellite Pi 2s. Pi 2s occurred around 1250 and 1300UT on May 5, 2008. MLT of each ground station and ETS-VIII at the occurrence of the first Pi 2 was as follows: KUJ: 21.4h, ZYK: 22.4h, ETS-VIII: 22.5h and CST: 23.6h. ETS-VIII was located at almost the same magnetic meridian as ZYK. The first Pi 2 occurred without any significant magnetic bay. The second Pi 2 was accompanied with magnetic bay signature. Characteristics of the Pi 2s are summarized as follows: (1) the initial deflection of the ground Pi 2s at ZYK and CST indicate the signature of the upward and downward FAC of the SCW, respectively. (2) Pi 2 oscillated in- or 180deg out-of-phase among the $D$ (eastward) on the ground and $N$ (eastward) components at the geosynchronous altitude. (3) Pi 2 oscillations in the $H$ (northward) and $P$ (parallel to the earth rotation axis) components exhibited phase (time) difference among them ($dT = 10^\sim30s$). We found other Pi 2 events that have the same characteristics.

By taking into account that the polarity of the $D$ and $N$ components Pi 2 oscillations were demarcated by the direction of the SCW FAC (upward or downward) and the sign of the geomagnetic latitude (northern- or southern-hemisphere), the present results suggest that the entire part of the SCW system oscillated in a synchronized manner. On the other hand, the time differences in the $H$ and $P$ components Pi 2 can be explained by a characteristic of Pi 2 propagation in the magnetosphere, which was examined by Uozumi et al. [2000 and 2009].

Keywords: Pi 2, substorm current wedge, simultaneous ground-geosynchronous observation, substorm, MAGDAS/CPMN, ETS-VIII