The 2009-2010 monthly MU radar observation programme for meteor head echoes

Johan Kero¹*, Csilla Szasz¹, Takuji Nakamura¹, David D. Meisel², Toshio Terasawa³, Hideaki Miyamoto⁴, Yasunori Fujiwara⁵, Masayoshi Ueda⁶, Koji Nishimura¹

¹National Institute of Polar Research, ²SUNY Geneseo, Geneseo, NY, USA, ³University of Tokyo, Chiba, ⁴University of Tokyo, Tokyo, ⁵Nippon Meteor Society

Meteors, or colloquially shooting stars, are caused by particles from space that are heated up and shattered in the atmosphere. Different estimates of how much mass these meteoroids bring to our planet vary by several orders of magnitude. We conducted a systematic set of monthly meteor head echo observations from 2009 June to 2010 December (>500 h), except for 2009 August, with the Shigaraki Middle and Upper atmosphere (MU) radar in Japan (34.85 degree N, 136.10 degree E), resulting in more than 100,000 high-quality meteor detections. The ultimate purpose of our observation programme is to improve the estimate of the flux of extraterrestrial material into the Earth’s atmosphere and to investigate the possible flux of extrasolar meteoroids entering the solar system and crossing Earth’s orbit.

Using the interferometric ability of the MU radar we have developed analysis algorithms that give precise geocentric velocities and directions of the observed meteoroids - a few hundreds of metres per seconds and a fraction of a degree, respectively. About 3000 events from about ten thousand head echoes per 24 h observation have the above mentioned accuracy. The head echoes are detected in the height range of 73-127 km. The high number of detections allows us to map the seasonal variation of the sporadic meteor influx, as well as its characteristics in form of geocentric velocity and altitude distribution of the deposited material. The initial altitude distribution shows clear velocity dependence, higher velocity meteoroids ablating at higher altitude.

Our data set contains both shower and sporadic meteor detections. Sporadics are those meteoroids that cannot be directly ascribed to a parent body. Sporadics are the most numerous among our observed particles, and the main contributors to the mass influx into the Earth atmosphere. Shower meteors provide good opportunities to compare head echo observations, as well as our analysis methods, with results using other techniques as with photographic and video observation systems.

Keywords: meteor, meteoroid, HPLA radar, head echo

キーワード: meteor, meteoroid, HPLA radar, head echo

Keywords: meteor, meteoroid, HPLA radar, head echo