Optical pressure sensors for DAC experiment: application in high-pressure studies

Nadezda Chertkova1*, Shigeru Yamashita2

1ISEI, Okayama University, 2ISEI, Okayama University

Structural properties of melts and minerals are widely examined by in situ spectroscopic studies with externally heated diamond anvil cell (HDAC) [1]. While the temperature can be controlled with an accuracy of plus/minus 0.5-1.5 degree C with this technique [2], a direct pressure measurement is complicated by the differences in compressibility and thermal expansivity for the variety of samples. Only few spectroscopic standards can be used for pressure determination in the HDAC experiments involving silicate melts. One of the non-reactive pressure sensors which was calibrated in the wide pressure- and temperature ranges is ^13C diamond [3]. Its first-order Raman shift is distinct from that of diamond anvils and indicates the pressure in immediate proximity to the sample.

The objective of this work was to test the precision of ^13C diamond pressure marker at high pressures and elevated temperatures. Experiments were carried out in the HDAC, with pure H2O as a pressure medium and two optical pressure markers - ^13C diamond aggregate chip and ruby chip. Already well established phase transitions in H2O system and ruby fluorescence pressure scale were used as references for checking the precision of pressure determination with ^13C diamond Raman shift.

In the temperature (22-300 degree C) and pressure (up to 4.8 GPa) ranges studied, a good agreement between the phase transitions in H2O system and the pressure values obtained from two pressure sensors was achieved during heating cycles. The average difference between pressures calculated from ^13C diamond Raman shift and those calculated from ruby fluorescence line shift (0.16 GPa) lies within the reported uncertainty of calibrations [3], [4], [5]. The largest full width at half-maximum (FWHM) for the first-order Raman peak of ^13C diamond was found to be approximately 9.9 cm\(^{-1}\) at 300 degree C, that is much smaller than FWHM for ruby fluorescence lines.

Experiments in the H2O system demonstrated that ^13C diamond is a precise pressure sensor which immediately detects sudden pressure drops in the case of sample decapsulation. These features are essential for the pressure control in in-situ studies of magmatic phenomena, such as mixing behavior of magma and volatiles, structural changes in melts and fluids, crystallization sequences.

References

Keywords: diamond anvil cell, 13C diamond, ruby, pressure sensor