Prediction of average S-wave velocity for deep subsurface structure from fundamental mode Rayleigh wave phase velocity

Tatsuya Itoi

The University of Tokyo

In this paper, an empirical relationship between phase velocity for fundamental mode Rayleigh wave and average S-wave velocity of deep subsurface structure.

It is evaluated numerically using three-dimensional subsurface structure model proposed by National Research Institute for Earth Science and Disaster Prevention (Fujiwara, 2009). First, one-dimensional subsurface structure model is extracted from the three dimensional model. Then, phase velocity for fundamental mode Rayleigh wave in horizontally-layered medium is calculated for wavelength from 100 to 1000 meters using a program provided by Hisada (1997).

Calculated phase velocities are similar to average S-wave velocities in most cases. An average S-wave velocity over a certain length is empirically about 1.1 times as large as a phase velocity with the same wavelength.

It is expected that Average S-wave velocity, or S-wave profile, will be constructed with reasonable accuracy from micro-tremor array observation on ground surface in near future.

Keywords: Rayleigh wave, Average S-wave velocity, Deep subsurface structure, Phase velocity