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The first observation of the altitude distribution of Jovian near-IR auroral emission using
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The altitude emission profile is very important to understand that why the spatial distribution of the IR emission; famiech H
Hs* are morphologically different (e.g., Raynaud et al., 2004). The origin of this morphological deference is still unknown. It
may be caused by the difference of heating altitude and/or difference of precipitation energy.

Although the altitude distribution of IR auroral emission of &hd H; T is well discussed by the theoretical model (e.g., Kim
et al., 1990; Grodent et al., 2001), observational study is limited. The observation of vertical distributigh ebldmn density
and vibrational-rotational temperature are only reported by Lystrup et al., 2008. And there is no vertical-resolved observation of
H, emission.

Based on the model calculation, it is thought that the difference of IR emission altitude betweeaw H;+ is about 500-

1000 km (Grodent et al., 2001). It is impossible to detect this vertical difference by ground-based observation, because the typic:
seeing of 0.6 arcsec is corresponding to the vertical resolution of about 1800 km at the Jupiter. The recent technique of Adaptiv
Optics (AO) makes it possible to get the high spatial resolved data about 0.1 arcsec, corresponding to the vertical resolution ¢
about 300 km.

Simultaneous kland H;+ observation near 2.1 um took place on 30 Nov. 2011 using the SUBARU/IRCS with AO188 system.
The slit is set along rotational axis (vertical to the equator) at northern pole. Using Europa for the guide star for AO system, we
succeeded the first limb observation of Jupiterdid H;* IR auroral emissions.

In the polar region, kKl emission lines S1(0), S1(1), and S1(2) at the wavelengths of 2.22, 2.12, 2.03 um and seVeral H
emission lines are detected.

We will report the difference in the spatial and vertical distributions of those emissions and temperatures, derived from the
observation.

Acknowledgement: Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatol

of Japan.
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Modeling micro structure of Jovian S-bursts
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Jupiter is known as the strongest source of decametric (DAM) radio emissions in the Solar system. The emissions occur durin
events called radio storms lasting from tens of minutes to few hours. The radio storms are well predictable, since their occurrenc
correlates well with certain range of Jupiter rotation phases and orbital positions of Jovian innermost moon lo. The control of
radio emissions from lo can be explained by the combination of such factors as strong Jovian magnetic field, fast rotation o
Jupiter (much faster than that of lo’s orbital motion) and presence of plasma along lo’s orbit sputtered by humerous volcanoe
on its surface.

Crossing of Jovian magnetic field lines by lo causes about 400 kV voltage across the moon by electromagnetic induction tha
leads to acceleration of electrons in its vicinity. The electrons perform cyclotron motion propagating along magnetic field lines
towards Jupiter. As they approach Jupiter, some of them are reflected at corresponding mirror points due to increasing value
the magnetic field. However, part of electrons that penetrates deeply into Jovian atmosphere is lost due to collisions that leads
a deficit of certain pitch angles in the electron distribution of the upstream and can pump electromagnetic waves to grow by the
cyclotron maser instability (CMI) mechanism.

The above macroscopic picture explains many observational features of DAM emissions, but does not account for comple
morphology of time -frequency patterns often present in spectrograms. First, the emissions can be roughly divided into twc
classes called S- and L-bursts, depending on their characteristic time scales: order of seconds for L(Long) ones and order
milliseconds for S(Short) ones. Furthermore, spectrograms of S-emission events present us with perplexing variety of spectr
patterns, from simple linearly drifting in frequency bursts to extremely complicated shapes, which can hardly be interpreted
within a framework of a simple CMI model.

An attempt to look at S-bursts with sub-microsecond time resolution had been performed in [1,2] aimed at understanding the
very basic details of the emission mechanism. It had been suggested in [2] that two classes of models, of amplifier and generat
type, can serve as prototypes of linear wave growth and saturated plasma wave instability, correspondingly. The final conclusio
of paper [2] derived from the analysis of several simple linearly drifting bursts stated that only the former mechanism could
account for the observed characteristics of S-bursts. It remains, however, unclear whether such type of model can be used f
explaining the generation mechanism of other, more complicated bursts, as well as whether linear wave growth is never saturatt
in simple linearly drifting bursts.

In this work, we perform a more systematic study of the Jupiter radio emission waveforms recorded at world largest DAM
array UTR-2 on March 15, 2005, with the purpose of validating the amplifier model for a larger set of S-bursts with different
properties. First, we analyze several simple linear S-bursts and search for waveform segments with apparent saturation that cot
be attributed to generator model (Fig.1). We attempt then to interpret the found segments with amplifier model all the same. Fo
this purpose, we perform a numerical simulation of amplifier-type signals trying to reconstruct the found saturating waveforms.
Finally, we interpret such waveform segments in terms of characteristic time of autocorrelation function and fluctuating instan-
taneous bandwidth in the selected S-bursts. We also present the analysis of several S-bursts displaying a complex pattern in
time-frequency plane checking for its consistency with the amplifier-type model.

References
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Fig 1. Examples of S-bursts: waveforms of amplifier (left) and generator (right)
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Titan’s degassing history constrained by the isotopic ratio and abundance of Ar in the

atmosphere
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