Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS21-P01

会場:コンベンションホール

時間:5月19日18:15-19:30

SMILES が捉えた成層圏・中間圏の HO_2 ラジカルの日変動 SMILES measurements of diurnal variations of hydroperoxyl radical (HO_2) in the strato-

SMILES measurements of diurnal variations of hydroperoxyl radical (HO_2) in the stratosphere and mesosphere

鈴木 尚 1* , 佐川 英夫 2 , 中野 幸夫 1 , 水野 のり 2 , 笠井 康子 2 Nao Suzuki 1* , Hideo Sagawa 2 , Yukio Nakano 1 , Nori Mizuno 2 , Yasuko Kasai 2

1 東京学芸大学, 2 情報通信研究機構

¹Tokyo Gakugei University, ²NICT

1 序論

 ${
m HO_2}$ ラジカルは大気の主な酸化反応に関与する重要な酸化体の 1 つである。成層圏・中間圏において ${
m HO_2}$ の体積混合比は約 10 億分の 1 と非常に微量であり、これまで観測は非常に困難であった。そのため、 ${
m HO_2}$ の日変動などのふるまいは明らかになっていない。

本研究では、国際宇宙ステーション (ISS) 搭載の超伝導サブミリ波リム放射サウンダ (SMILES) により観測されたデータを用いて、 HO_2 濃度の高度分布や日変動を解析した。解析した結果から、成層圏および中間圏大気の HO_2 の生成・消失反応について考察を行った。

2 SMILES による HO₂ 観測

SMILES のプラットフォームである ISS は地上から 320-340 km 上空にあり、約 90 分で地球を一周する。SMILES の地球上の観測点数は、1 日に約 1630 点であり、2009 年 9 月-2010 年 4 月にかけて、 65° N-38 $^\circ$ S の緯度帯を中心に観測した。SMILES は、大気中に含まれる微量物質が発しているサブミリ波領域の電波を受信し、音響光学型分光計によって分光されたスペクトルを測定する。得られた放射輝度スペクトルを反転解析することで、大気中の HO_2 の混合比鉛直分布を導出している。本研究では $649.70~\mathrm{GHz}$ に遷移周波数をもつ HO_2 のスペクトル強度解析によってえられた HO_2 の体積混合比データを用いて、以下の方法で HO_2 の高度分布および日変動を解析した。

【日中・夜間における HO_2 の高度分布】SMILES で観測した HO_2 データを用いて、赤道域 (20^o N- 20^o S)、中緯度 (20^o N- 50^o N)、極域 (50^o N- 65^o N) の 3 つの緯度領域における HO_2 の高度分布を導出し、日中と夜間の変化について調べた。

【成層圏と中間圏における HO_2 濃度の日変動】SMILES で観測した HO_2 データを用いて、成層圏 (高度 18-50~km) と中間圏 (高度 50-80~km) における HO_2 濃度を上記の緯度範囲ごとに導出した。横軸に太陽天頂角をとることにより、 HO_2 濃度の日変動について調べた。

3 結果・考察

 ${
m HO_2}$ の高度分布から、 ${
m HO_2}$ 濃度のピーク高度は、日中では約 $75~{
m km}$ 、夜間では約 $80~{
m km}$ に存在し、日中、夜間ともに、中間圏でピークが見られた。このことは、各緯度領域においても共通の結果であった。

図1に示したように、本研究では中間圏から下部熱圏にかけて全球の HO_2 の日変動をはじめて高精度で観測することに成功した。日中の HO_2 濃度の増加は明らかに光化学反応が関わっていることがわかる。成層圏では、 O_3 の光解離反応から生成する励起酸素原子、 $O(^1D)$ と H_2O の反応、中間圏ではそれに加えてさらに、 H_2O の光解離反応によって HO_2 の生成メカニズムを説明することができる。

謝辞:SMILES データ処理は情報通信研究機構の NICT サイエンスクラウドを用いて行われた。

キーワード: オキシダント, HO2, 過酸化水素ラジカル, 日変動, 成層圏, 中間圏

Keywords: oxidant, HO₂, hydroperoxyl radical, diurnal variation, stratosphere, mesosphere

Japan Geoscience Union Meeting 2013 (May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

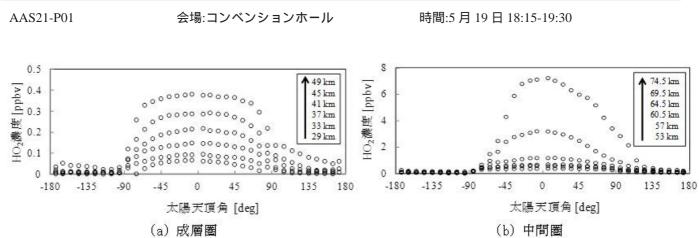


図1 SMILESが捉えた成層圏および中間圏における赤道域での HO_2 の日変動 (高度29.0 km-74.5 km)