(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-01

会場:301B

時間:5月20日09:00-09:15

赤道半年周期振動が中高緯度に与える影響と半球間の違いについて Interhemispheric differences in the roles of SAO in mid- and high latitudes

岡本 功太 1* , 佐藤 薫 1 Kota Okamoto 1* , Kaoru Sato 1

1 東大院理

Previous studies showed the existence of the climatological upwelling in the subtropical stratopause region. It is known that the seasonal variation in the subtropical upwelling is closely related to the equatorial semiannual oscillation (SAO). The SAO and the residual circulation in the middle atmosphere are driven by atmospheric waves such as planetary waves and gravity waves. This study shows a dynamical link between the SAO and the subtropical upwelling in the austral and boreal winter from statistical analysis using a reanalysis (MERRA) data. All years (1979-2010) are divided into two groups, strong SAO years and weak SAO years, defined by the zonal wind at the equatorial stratopause. For the austral winter (July), the composite analysis shows the strong connection between the interannual variability of the SAO, the subtropical upwelling, and the planetary wave activity at lower stratosphere. Since interannual variations of the SAO and planetary wave activity affect the subtropical momentum deposition in the mesosphere, the variation in the upwelling is controlled by the SAO and planetary wave activity. In contrast, the planetary wave activity is not correlated to the subtropical upwelling for the boreal winter (January), although the SAO and the upwelling are negatively correlated. The interhemispheric difference is attributable to the difference in the property of the planetary wave. Transient planetary waves are dominant for the austral winter, while stationary component is dominant for the boreal winter.

キーワード: 赤道半年周期振動, 残差循環, プラネタリー波

Keywords: equatorial semiannual oscillation, residual circulation, planetary waves

¹The University of Tokyo

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-02

会場:301B

時間:5月20日09:15-09:30

AIRS 高解像度温度データを用いた南半球冬季の成層圏における重力波の伝搬特性の解析

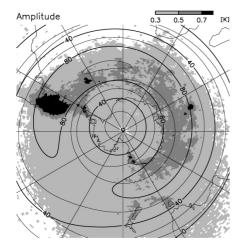
Propagation characteristics of gravity waves in the austral winter using the AIRS high resolution data

土屋 主税 ^{1*}, 佐藤 薫 ¹, M. Joan Alexander², Lars Hoffmann³ Chikara Tsuchiya^{1*}, SATO, Kaoru¹, ALEXANDER, M. Joan², HOFFMANN, Lars³

1 東京大学大学院理学系研究科, 2 ノースウエスト研究所, 3 ユーリヒ総合研究機構

Aqua 衛星に搭載された赤外測器 Atmospheric Infrared Sounder (AIRS) は,天底で 13.5 km の水平分解能を持ち,鉛直波長が長く水平波長が短い重力波を解像できる.AIRS データを用いた山岳や対流起源の振幅の大きな重力波イベント (Eckermann et al., 2007; Grimsdell et al., 2010) は研究されているものの,ジェット・前線システム起源の重力波はこれまで解析されていない.これを解析するため,本研究では南半球の冬季に着目した.この領域には,南北伝播した山岳波 (Sato et al., 2009) や切り立った島の山岳波 (Alexander et al., 2009) も現れると考えられる.従来の重力波パラメタリゼーションで考慮されていないこれらの重力波による運動量輸送は,極渦の強さや季節進行の再現性の向上に本質的な役割を果たすと考えられている (McLandress et al., 2011).

2004 年 6~8 月の AIRS 高解像度温度データ (Hoffmann and Alexander, 2009) に,波の水平構造抽出手法を適用した.解像される重力波の鉛直波長は約 20 km より長いため,まず,高度 30~48 km の温度擾乱を平均し,ノイズを減少させた.次に,軌道直交方向 (軌道方向) のデータ列に,一次元ウェーブレット変換の一種である S 変換を適用し,軌道直交方向 (軌道方向) となす角が 45 °以内の波の振幅と水平波長,波の向きを求めた.最後に,ノイズに由来すると考えられるデータを取り除いた.また,対流圏下層の前線の存在を診断するために、再解析データ MERRA を用いて 600 hPa の前線形成関数を計算した.


解析期間で平均した重力波イベントの振幅を図に示す.アンデス・南極半島域や南大洋の島々周辺のほか,海洋上にも振幅の大きな領域がみられた.前線形成関数からは,振幅 0.5 K 以上のイベントのうち約三分の二の地点に前線が存在することがわかった.このことから,観測された重力波の励起メカニズムにとってジェット・前線システムが重要であると考えられる.

西風中のイベント格子数を波数ベクトルの向きと 30~hPa における西風の緯度勾配の符号で場合分けした。勾配が負の領域では南向きの波数ベクトルをもつ波が支配的であり,反対に正の領域では,南向きに比べ北向きの波が僅かに多いことがわかった。これは,位相が南北を向く山岳波が、背景東西風シアにより,ジェットの強風軸に向かうような南北波数を持つこと (Sato et al., 2009) と整合的である。

今後,南大洋の島々周辺のイベントと他の領域のイベントの重要性を,運動量輸送の観点で定量的に評価したい.また,南半球冬季の重力波の励起源を明らかにするため,対流圏界面ジェットや低気圧の発達と観測された重力波との関係を調べる予定である.

キーワード: 成層圏、重力波、ジェット・前線システム、衛星データ、S 変換

Keywords: stratosphere, gravity waves, jet-front system, satellite data, S-Transform

¹Graduate School of Science, the University of Tokyo, ²NorthWest Research Associates, ³Forschungszentrum Julich

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-03

会場:301B

時間:5月20日09:30-09:45

成層圏突然昇温時における中間圏での大循環変動 Circulation changes in the mesosphere during stratospheric sudden warming events

飯田千尋 1 , 廣岡 俊彦 2* , 江口菜穂 3 IIDA, Chihiro 1 , Toshihiko Hirooka 2* , EGUCHI, Nawo 3

1 九州大学大学院理学府, 2 九州大学大学院理学研究院, 3 九州大学応用力学研究所

近年の衛星観測に基づき、2009 年 1 月に生じた成層圏突然昇温に伴う西風から東風への変動が、上部成層圏よりも中間圏で先行して生じていることが報告されている (Manney et al. 2009)。このような現象は成層圏 - 中間圏の力学的結合の存在を示唆するものであるが、その完全な理解のためには、中間圏界面域にまで及ぶ大気領域全体に対する、突然昇温時の詳細な力学的解析の蓄積が必要である。そこで本研究では、2004 年以降の成層圏突然昇温の事例に対して、Aura MLS による衛星観測データに基づき、気温場、風系場の力学的解析を行った。その結果、上記のような先行する中間圏での東風は、常に観測されるわけではないことが明らかとなった。先行する東風の出現には、中間圏内部で生成されるか、もしくは屈折することにより中間圏に到達し、そこでの東風加速を引き起こす大規模波動の存在が必要であり、突然昇温の直前に生じる中間圏での平均風系変動の結果、それらの大規模波動の活動度が高まるものと考えられる。

キーワード: 成層圏突然昇温, 中間圏循環, MLS データ

Keywords: stratospheric sudden warming, mesospheric circulation, MLS data

¹Graduate School of Science, Kyushu University, ²Faculty of Science, Kyushu University, ³Research Institute for Applied Mechanics, Kyushu University

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-04

会場:301B

時間:5月20日09:45-10:00

成層圏オゾン減少に伴う対流圏循環の変化における eddy の役割について A role of eddy on the tropospheric circulation trend corresponding to the stratospheric ozone reduction in boreal summer

中村 哲 ^{1*}, 山崎 孝治 ², 秋吉 英治 ³ Tetsu Nakamura^{1*}, Koji Yamazaki², Hideharu Akiyoshi³

The tropospheric responses to changes in the stratospheric ozone radiative heating are examined by assessing influences of long-term trends in the stratospheric ozone on the troposphere. A linear trend analysis was applied to five reanalysis data sets and five chemistry climate models (CCMs) for boreal summer (June-July-August) in ozone depleting period (1981-2000). Sensitivity simulations of depleting ozone using CCMs show poleward shifts of the subtropical jet and expansion of the Hadley cell as well as reanalyses show. Anomalous radiative heating associated with the decrease of the ozone induces the negative potential vorticity (PV) anomalies near tropopause. Steady responses to the ozone radiative heating anomalies evaluated by the PV inversion technique show the poleward shift of the subtropical jet but have small amplitudes in the lower to middle troposphere. Eddy feedback associated with changes in the basic state due to PV anomalies is examined by idealized experiment using dry general circulation model (GCM). In the upper troposphere, wave forcing accelerates the zonal wind north of the jet and decelerates south of the jet. Then, the deceleration forcing south of the jet drives anomalous residual mean circulation in the lower latitudes corresponding to the expansion of the Hadley cell in the middle troposphere. The Coriolis force associated with the anomalous residual mean circulation expand the zonal wind anomalies around the jet from the upper troposphere to the lower troposphere. The results suggest an important role of the stratospheric ozone on the tropospheric climate changes via modifying the eddy activity in the troposphere.

キーワード: 成層圏オゾン、化学気候モデル、長期変化

Keywords: stratospheric ozone, chemistry climate model, long-term trend

¹ 国立極地研究所, 2 北海道大学, 3 国立環境研究所

¹National Institute of Polar Research, ²Hokkaido Univ., ³National Institute for Environmental Studies

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-05

会場:301B

時間:5月20日10:00-10:15

赤道準 2 年振動と赤道域上昇流の長期トレンド Long-term trend in the stratospheric quasibiennial oscillation and tropical mean upwelling

河谷 芳雄 ^{1*}, ケビン・ハミルトン ² Yoshio Kawatani^{1*}, Kevin Hamilton²

1独立行政法人海洋研究開発機構,2ハワイ大学国際太平洋研究センター

The zonal-mean zonal circulation in the tropical stratosphere is dominated by the quasibiennial oscillation (QBO) between prevailing easterlies and westerlies with periods of about 28 months. The vertical structure of the QBO in the lowermost stratosphere is linked to the mean upwelling there, which itself is a key factor in determining stratospheric composition. We report on an analysis of near-equatorial radiosonde observations for 1953-2012 and reveal a previously unknown long-term trend of weakening amplitude in the QBO of zonal flow in the tropical lower stratosphere. The trend is particularly notable at 70 hPa (~19 km), where amplitudes dropped by roughly 1/3 over the period. This trend is also apparent in the global warming simulations of the four models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) that realistically simulate the QBO. This effect is most reasonably explained as resulting from a trend of increased mean tropical upwelling in the lower stratosphere. Almost all comprehensive climate models have projected an intensifying tropical upwelling in global warming scenarios, but attempts to estimate changes in the upwelling by using observational data have yielded ambiguous, inconclusive, and/or contradictory results. Discovery of a significant trend in the lower stratosphere QBO amplitude provides strong support for the existence of a long-term trend of enhanced upwelling near the tropical tropopause and this trend can be considered a subtle, but robust, indicator of the response of the climate system to anthropogenic forcing over recent decades.

キーワード: 赤道準 2 年振動, 残差循環 Keywords: QBO, Brewer-Dobson circulation

¹JAMSTEC, ²IPRC Univ. Hawaii

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-06

会場:301B

時間:5月20日10:15-10:30

温帯低気圧に伴う重力波とその対流圏界面逆転層形成における役割 Gravity waves associated with an extratropical cyclone and possible role in the formation of tropopause inversion layer

大塚 成徳 ¹, 余田 成男 ^{2*} Shigenori Otsuka ¹, Shigeo Yoden ^{2*}

1 独立行政法人理化学研究所計算科学研究機構, 2 京都大学大学院理学研究科地球惑星科学専攻

We perform a numerical simulation on the generation of gravity waves associated with an extratropical cyclone and investigate its possible role in the formation of tropopause inversion layer (TIL), which is a persistent layer with high static stability (Birner, 2002). We use a JMA regional non-hydrostatic model (NHM), which has 200 layers in the vertical from the surface to 25 km in altitude, and the horizontal domain is 4140 km x 4000 km around Japan with a horizontal resolution of 20 km. The time integration period is 72 hours from 19th to 22nd in February, 2009, during which a typical explosive cyclogenesis was observed. For the initial and boundary conditions, we use NCEP FNL.

An arc-shaped wave packet propagating northward from a jet streak associated with the extratropical cyclone is identified during its developing stage, and the wave packet satisfies the dispersion relation of inertia-gravity wave with a period of about 300 minutes. Histograms of N^2 at the TIL classified by d^2w/dz^2 and dw/dz at the TIL show that enhancement of d^2w/dz^2 by vertically-propagating gravity waves have a significant impact on the strength of the TIL. The effect of gravity waves on the TIL is clearer in the regions where relative vorticity at the tropopause is negative. This result implies that gravity waves may have an important role in making the negative correlation between the strength of the TIL and relative vorticity at the tropopause.

キーワード: 重力波, 温帯低気圧, 対流圏界面, 逆転層, 数値シミュレーション

Keywords: gravity waves, extratropical cyclone, tropopause, inversion layer, numerical simulation

¹RIKEN Advanced Institute for Computational Science, ²Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto Univeersity

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-07

会場:301B

時間:5月20日10:30-10:45

温室効果の増加およびオゾン層の破壊と回復がブリューワー・ドブソン循環に与える影響

Impacts of increase in greenhouse gases and ozone depletion and recovery on the Brewer-Dobson circulation

出牛 真 ^{1*}, 柴田 清孝 ¹ Makoto Deushi^{1*}, Kiyotaka Shibata¹

気象研究所化学気候モデル (MRI-CCM) によって行われた長期シミュレーション結果を用いて、現在と将来における 成層圏の物質輸送特性の変動を解析した。まず、温室効果ガスおよびオゾン破壊物質が共に時間変化するシナリオに基づいて外部強制を与えたシミュレーション実験を、参照実験として1960~2100年の期間行った。さらに、温室 効果ガスあるいはオゾン破壊物質のどちらか一方の外部強制を1960年の値に固定した2つの感度実験を同期間について行った。これら2つの感度実験と参照実験から得られたシミュレーション結果を比較することで、温室効果ガスおよび オゾン破壊物質の外部強制がそれぞれ成層圏の物質輸送特性に与える影響を分離した。

2 1世紀後半においては温室効果ガスの増加が成層圏残差子午面循環の強化をもたらすとともに、中緯度における水平渦輸送の増大をもたらした。この水平渦輸送の増加は、特に北半球中緯度において顕著であった。一方、南半球高緯度域においてオゾン破壊が顕著となる21世紀初頭においては、年平均残差子午面循環と一酸化二窒素の平均子午面輸送が、南極域上空の下部成層圏で強化されるとともに南半球域の上部成層圏においても有意な強化がみられた。

キーワード: 気候変動予測, 成層圏物質輸送, 化学気候モデル

Keywords: climate projections, stratospheric transport, chemistry-climate model

¹ 気象研究所

¹Meteorological Research Institute

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-08

会場:301B

時間:5月20日11:00-11:15

Biak 上空 の成層圏・TTL のエアロゾル揮発特性と組成 Volatility and conposition of aerosol in tropical stratosphere and TTL

林 政彦 ^{1*}, 柴田 隆 ², 原 圭一郎 ¹ Masahiko Hayashi ^{1*}, Takashi Shibata ², Keiichiro Hara ¹

1 福岡大学理学部, 2 名古屋大学大学院

1.はじめに

大気は地球規模で循環し、それに伴いオゾン、水蒸気、メタンなどの様々な微量成分も輸送される。対流圏から成層圏への大気の流入は、極めて低温の熱帯対流圏界層 (TTL:高度約 14 から 19km) を通して行われると考えられている。このため、大半の水蒸気は TTL 内で凝結して雲を形成し、大気の流れから脱落し (脱水)、大気は極めて乾燥した状態 (約 2ppm) で成層圏に流入する。一方で、TTL における巻雲の形成はしばしば、非常に高い過飽和度 (相対湿度が約 150 %)で起こることが報告されており、エアロゾルの組成とその氷晶核機能についての理解が、TTL における脱水過程を理解する上でも重要な課題となっている。そこで、西太平洋領域における成層圏・TTL のエアロゾル粒径分布と組成に関する知見を得るため、2011, 12, 13 年 1 月に , インドネシア , Biak 島にて気球観測を実施した。

2 観測

本研究では、エアロゾル組成を揮発特性により推定することとし、エアロゾルの粒径分布と非揮発性粒子の粒径分布を得るために、大気を非加熱状態で直接計測する光散乱粒子計数装置(OPC)とサーモデニューダーを接続した OPC を同時飛揚させた。OPC の計測直径は Dp>0.3、>0.4、>0.5、>0.66、>0.8、>1.2、>2.0、>3.4、>7.0、>11.4 μ m(屈折率 m=1.4-0i 光学的等価粒径)、サンプリング流量は 3.0 L/min である。サーモデニューダーはステンレス管 (内径 5 mm あるいは 8mm、長さ 70 cm)を加熱部長 50 cm(全長 60cm)のマントルヒータ (DC24 V、50 W)で、100~300 で 50 刻みに加熱した。実験に先立ち,室内実験により,1気圧下でテスト粒子の $100 \sim 300$ における揮発試験を行い,上空における揮発温度は、硫酸 100 、硫酸アンモニウム・硫酸水素アンモニウム 150° 200 ,海塩 300 以上と推定された。この観測装置をインドネシア Biak 島のインドネシア航空宇宙庁 (LAPAN) 観測所(1°10 S、133°6 E)より,2011年 1/10(加熱温度:200)、2012年 1/10(200),1/11(150),1/12(100)、2012年 1/9(200)、1/10(300)、1/11(250)に放球した。

3. 結果と結論

a) 火山性エアロゾル

2011 年には, cold point tropopause の直下の 18km 付近に数万個/g の混合比 $(0.3~\mu~m)$ の大粒子濃度のピークとその下部に 1?m 前後の不揮発性粒子がみられた。これらは、2010 年 11 月の Merapi 火山の噴火によるものと推定される。 2012 年には 3 回の観測を通して cold point tropopause の上の約 20km に同様のピークを持つ層が見られた。これらの増大層のサブミクロンのエアロゾルはいずれも揮発性は高く, 2011 年 6 月の Nabro 火山噴火起源の硫酸エアロゾルと推定された。 2012 年に見られた増大層は,別の火山噴火による可能性が高い。

b)TTL ・成層圏エアロゾル中の揮発性成分と不揮発性成分

TTL 内のエアロゾルの主成分は,部分的に中和された硫酸あるいは硫酸と硫酸アンモニウムの外部混合エアロゾルと推定され、不揮発性成分がわずかに(0.3?m 以上の粒子数濃度で5%程度)含まれていた。不揮発性成分は、積乱雲活動に伴う雲層内で他と比べて多かった。また、成層圏のエアロゾルは硫酸が主成分と推定された。また、TTL よりもやや低い割合で不揮発性粒子が存在していた。

以上の結果から、火山性の不揮発性粒子がない場合でも、積乱雲により TTL 内へ不揮発性微小粒子が供給され、これが、成層圏へ輸送されていることが推定された。これらの不揮発性粒子数濃度は、TTL で観測される巻雲の粒子数濃度と同程度であり、巻雲の氷晶核として機能している可能性がある。

謝辞

本研究は、科学研究費補助金(課題番号:22241004)により実施された。また、Biak 島における観測にあたっては、 北海道大学 長谷部文雄教授、杉立卓治氏、明星電気 清水健作博士、東北大学 稲飯洋一博士、名古屋大学 櫻井万裕子氏ならびに LAPAN 観測所の研究員の方々に協力していただいた。ここに感謝の意を表す。

キーワード: 熱帯圏界面層, エアロゾル, 揮発特性, 巻雲

Keywords: Tropical Tropopause Layer, aerosol, volatility, cirrus

¹Faculty of Science, Fukuoka Univ., ²Graduate school of Nagoya Univ.

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-09

会場:301B

時間:5月20日11:15-11:30

HYVIS で観測された熱帯圏界面層の巻雲粒子 Cirrus cloud particles in the tropical tropopsuse layer observed by HYVIS

櫻井 万祐子 ^{1*}, 柴田 隆 ¹, 清水健作 ², 杉立卓治 ³, KOMALA, Ninong ⁴ Mayuko Sakurai ^{1*}, Takashi Shibata ¹, SHIMIZU, Kensaku ², SUGIDACHI, Takuji ³, KOMALA, Ninong ⁴

¹ 名古屋大学, ² 明星電気, ³ 北海道大学, ⁴LAPAN

下部成層圏の水蒸気量は海面温度や成層圏でのオゾン消滅反応に影響する。下部成層圏の水蒸気の供給源としては、ブリューワー・ドブソン循環による対流圏から成層圏への輸送と成層圏でのメタンの酸化があるが、下部成層圏では対流圏からの輸送による効果が支配的である。

対流圏から成層圏へ輸送される空気は、熱帯圏界面層 (Tropical Tropopause Layer; TTL) を通過する。TTL は大気中最も低温な領域であり、巻雲が頻繁に生成されて、通過する空気は脱水される。従って巻雲の生成は下部成層圏の水蒸気量を左右する。さらに、巻雲自体、地球の放射収支に影響を与える。巻雲粒子の個数濃度や形態は雲の微物理特性や放射収支に関する基本的な情報である。

本研究は、雲粒子ゾンデ (HYdrometeor VIdeoSonde; HYVIS、明星電気製)を用いた観測により巻雲の微物理特性を明らかにすることを目的としている。気球搭載 HYVIS は雲粒子を等時間間隔で新たな透明フィルム上に捕獲、ビデオカメラでフィルム背面から撮影し、その画像を地上に電波伝送して、気球上昇に伴う雲粒子の形状と個数の刻々の変化を測定する装置である。今回用いた HYVIS は外気を強制吸引するタイプであるが、画像の実面積と吸引速度からサンプリングした空気の体積を求め、各高度の雲粒子個数密度を見積もることが可能である。

観測は 2013 年 1 月 5 - 14 日にインドネシアのビアク (南緯 1.17 度, 東経 136.06 度) にて SOWER 観測キャンペーンの一環として行った。キャンペーンでは HYVIS のほか、ライダーによる雲の高度分布の連続観測、気球搭載露点湿度計 (CFH)、光学粒子計数計 (OPC) や ECC オゾンゾンデなど多種類の観測も同期間に実施した。

HYVIS は 1 月 7, 8, 9 日にそれぞれ 1 機ずつ、合計 3 機放球された。雲粒子補足用透明フィルムの長さから決まる撮影可能時間は 75 分間で、この時間内に HYVIS は成層圏へ到達する。

1月9日18:46LT に放球した観測結果では、巻雲粒子径は、より下層や中緯度で頻繁に見られる粒子に比べて非常に小さく、個数密度も小さい。ほとんどの粒子の直径は6?20ミクロンの範囲にあった。流量から見積もった雲粒子の個数密度は10^[4]-2 × 10^[5]/m^[3] であった。雲粒子の多くが球形に近く、稀に柱状、針状、板状の粒子が補捉された。粒径が40ミクロンを超える大きな氷粒子は見られなかった。

9日の HYVIS 観測の際同時に観測していたライダー測定は、放球直後より、雲濃度の増加によって測定範囲が雲頂高度に達していないが、放球直前までの約10時間は雲頂高度がほぼ一定の17.5kmであった。HYVIS ではこの高度を超えて19km 以上の高度でも雲粒子が続けて測定されている。ライダー観測によれば、観測時高度8kmから17.5kmにかけて比較的高濃度の巻雲が存在していた。このため、この高濃度巻雲層を通過することにより、その後、気球やペイロードを吊るすロープなどからのコンタミネーションが生じた可能性がある。

¹Nagoya University, ²Meisei Electric Co., Ltd., ³Hokkaido University, ⁴LAPAN

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-10

会場:301B

時間:5月20日11:30-11:45

気候監視のためのラジオゾンデ用鏡面冷却式露点計の開発 Development of a balloon-borne chilled-mirror hygrometer for climate monitoring

杉立 卓治 ^{1*}, 藤原 正智 ¹, 清水建作 ², 井端一雅 ³, 金井良之 ³ Takuji Sugidachi^{1*}, Masatomo Fujiwara¹, SHIMIZU, Kensaku², IBATA, Kazumasa³, KANAI, Yoshiyuki³

1 北海道大学環境科学院, 2 明星電気株式会社, 3 アズビル株式会社

Atmospheric water vapor plays important roles in the global climate system. In upper troposphere and lower stratosphere, it contributes strongly to the radiative balance and influences variability of ozone layer through its photochemical nature. Accurate monitoring of water vapor is crucial for improving our understanding of climate change. Chilled mirror hygrometers have been used as transfer standard in laboratories and metrology labs, because this type of hygrometers can measure water vapor consentration with high accuracy. We have converted FINEDEW TM (Azbil Corporation), which is a chilled mirror hygrometer for industrial application, into a hygrometer for upper air observation. Because the FINEDEW TM uses a two-stage Peltier cooler, it does not need cryogen and thus is easy to handle. We have conducted flight tests in Japan and Indonesia to evaluate the performance. The results showed that this hygrometer has ability to measure atmospheric water vapor from the surface to the lower stratosphere. Also, simultaneous soundings with the Cryogenic Frostpoint Hygrometer (CFH) showed good agreement at least in the whole troposphere. With some more improvements, it is considered that our hygrometer will contribute to the monitoring of water vapor in the stratosphere as well as the tropsphere.

キーワード: 水蒸気, 気候, オゾン層

Keywords: Water vapor, Climate, Ozone layer

¹Hokkaido University, ²MEISEI ELECTRIC CO., LTD, ³Azbil Corporation

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-11

会場:301B

時間:5月20日11:45-12:00

太陽プロトンイベントが極域大気の硝酸およびオゾン濃度に及ぼす影響に関する数値実験

A CCM experiment on the effects of solar proton events on HNO3 and O3 in the polar middle and lower atmosphere

秋吉 英治 ^{1*}, 山下 陽介 ², 門脇 正尚 ³, 関口 健太郎 ⁴, 中井 陽一 ⁴, 今村 隆史 ¹, 望月 優子 ⁴ Hideharu Akiyoshi ^{1*}, Yousuke Yamashita ², Masanao Kadowaki ³, Kentaro SEKIGUCHI ⁴, Yoichi Nakai ⁴, Takashi Imamura ¹, Yuko MOTIZUKI ⁴

南極の氷床コア中の硝酸イオン濃度の極端な増加が太陽プロトンイベントの発生時期とよい一致を示していることが報告されている。両者のつながりを解明するため、化学気候モデルを用いた数値実験を行い、太陽プロトンイベントによる上層大気の NOx の増加と、その後の NOx から硝酸への変化、さらに中層大気を経て南極上空へ輸送される過程について調べた。

環境研で新しく開発した MIROC3.2 化学気候モデルを使って、1900 年の大気微量成分組成を作り、化学気候モデルの60-90N と 60-90S の 35-55km の高度領域で NOx を気候値より 10 倍増加させた初期値により、3 年間の積分を行い、その結果を NOx を増加させない実験結果と比較した。影響の季節依存性を調べるため、計算を開始する時期は1月、4月、7月、10月の4とおりで行った。その結果、NOx の増加の硝酸およびオゾンへの影響は計算終了時まで継続し、いずれの実験からも、極域での極成層圏雲の重力落下が、南極や北極の対流圏大気の硝酸濃度増加に重要であることがわかった。今後は、理化学研究所で開発を行っているイオン反応 + 中性化学反応を含むボックス化学モデルにより、数日間の太陽プロトンイベントによる NOx や Ox の増加をより定量的に見積もり、それを化学気候モデルへインプットし、過去に観測された太陽プロトンイベントの南極大陸やグリーンランド上への影響を調べる予定である。

キーワード: 太陽プロトンイベント, オゾン, 硝酸, 極域, 化学気候モデル

Keywords: solar proton event, ozone, nitric acid, polar region, chemistry-climate model

¹ 国立環境研究所, 2 日本学術振興会海外特別研究員, 3 東京大学大気海洋研究所, 4 理化学研究所

¹NIES, ²JSPS postdoctral researcher, ³AORI, University of Tokyo, ⁴RIKEN

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-12

会場:301B

時間:5月20日12:00-12:15

JEM/SMILES による O3, ClO, HOCl, BrO の観測について Observation of O3, ClO, HOCl, HO2, and BrO by JEM/SMILES

鈴木 睦 1* , 眞子 直弘 2 , 今井 弘二 1 , 佐野 琢己 1 , 光田 千紘 3 , 内藤 陽子 4 , 秋吉 英治 5 , 尾関 博之 7 , 西本 絵梨子 6 , 塩谷 雅 人 6

Makoto Suzuki^{1*}, Naohiro Manago², Koji Imai¹, Takuki Sano¹, Chihiro Mitsuda³, Yoko Naito⁴, Hideharu Akiyoshi⁵, Hiroyuki Ozeki⁷, Eriko Nishimoto⁶, Masato Shiotani⁶

 1 宇宙研, 2 千葉大/CeRES, 3 富士通 FIP, 4 京大, 5 環境研, 6 京大生存圏研, 7 東邦大 1 ISAS, 2 Chiba U./CeRES, 3 FIP, 4 Kyoto U., 5 NIES, 6 Kyoto U./RISH, 7 Toho U.

SMILES; Superconducting Submillimeter-Wave Limb Emission Sounder is a 4 K cooled 625-650 GHz limb sounder to observe O3, HCl, ClO, HO2, HOCl, BrO, HNO3, and O3 isotopes. SMILES had been operated on the International Space Station from Oct. 12, 2009 to Apr. 21, 2010. ?Since ISS is 51 degree inclined orbit, 30-45 days SMILES zonal mean could provide diurnal variation of chemical species in the stratosphere and mesosphere. Diurnal variation of O3, ClO, HOCl, HO2, and BrO are compared with two nudged CGCM calculations (SD-WACCM; Specified-dynamics WACCM, and MIROC) and satellite observations.

Diurnal variation of O3 agreed with SD-WACCM over 50-82 km, but small peak in the morning (7 am local time) is apparent for the SMILES but not for the SD-WACCM at 70 km.

Diurnal variation of ClO agreed quite well between SMILES L2 ver. 2.2 and SD-WACCM from 19 to 76 km altitude region. But nighttime ClO value of SMILES L2 ver. 2,2 above 50 km is less than SD-WACCM (70%), which is not clearly explained by the SMILES retrieval issue or our current knowledge of chemical kinetics.

Diurnal variation of HOCl also agreed quite nicely from 31 to 76 km. The nighttime build up of HOCl observed SMILES at 44-68 km are nicely reproduced by the SD-WACCM calculation using JPL2006 chemical kinetics dataset.

HO2 diurnal variation also agreed with SD-WACCM from 24 to 72 km. Above 76 km, SMILES L2 ver. 2.2 needs modification of a priori and its co-variance, and we will get better agreement with model calculations. SMILES L2 ver. 2.2 also shows night time bias due to AOS (Acousto-Optics Spectrometer) characteristics.

キーワード: オゾン層, 塩素系化学種, 臭素系化学種, サブミリ波, 国際宇宙ステーション, 中間圏 Keywords: Ozone layer, Chlorine species, Bromine species, sub-mm, International Space Station, mesosphere

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-13

会場:301B

時間:5月20日12:15-12:30

2010年1月15日の日食時の中層大気の変動について Atmospheric response during annular solar eclipse of 15 January 2010

今井 弘二 1*, 秋吉 英治 2, 山下 陽介 2, 鈴木 睦 1, 塩谷 雅人 3 Koji Imai 1*, Hideharu Akiyoshi 2, Yousuke Yamashita 2, Makoto Suzuki 1, Masato Shiotani 3

1 宇宙航空研究開発機構 宇宙科学研究所, 2 国立環境研究所, 3 京都大学生存圏研究所

日食は稀な天体イベントであるが、それはまた地球全球にわたる自然の摂動実験でもある。短時間で変動する太陽放射量の大気への影響は、大気光化学やその力学過程を調べる上でとても貴重な機会をもたらす。SMILES(超伝導サブミリ波リム放射サウンダ) は、2009 年 10 月 12 日から約半年間にわたって大気サブミリ波スペクトルの観測を行った。また、4K 機械式冷凍機と超伝導ミキサによる高感度な測定によって、2010 年 1 月 15 日の金環日食時の中層大気の変動を捉えることに成功した。本発表では、その SMILES の観測、ならびに化学輸送モデル (MIROC3.2-CTM) に食分の影響を取入れて計算した結果をもとに、日食時の太陽放射量の変動に伴う中層大気への影響について報告する。

キーワード: 中層大気, 成層圏, オゾン, 日食, SMILES, 国際宇宙ステーション

Keywords: middle atmosphere, stratosphere, ozone, solar eclipse, SMILES, international space station

¹Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, ²National Institute for Environmental Studies, ³Research Institute for Sustainable Humanosphere, Kyoto University

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-P01

会場:コンベンションホール

時間:5月20日18:15-19:30

北半球冬季成層圏における ENSO 変化の再検討 ENSO-induced changes in the Northern winter stratosphere revisited

田口 正和 ^{1*} Masakazu Taguchi^{1*}

- 1 愛知教育大学
- ¹Aichi University of Education

Using the JRA-25/JCDAS reanalysis and JMA hindcast (HC) data, this study re-examines the ENSO-induced changes in the Northern winter stratosphere.

This study seeks to better understand the observed changes in the time mean states and variability (such as occurrence of stratospheric sudden warmings, or SSWs): it is widely accepted that the polar vortex is weaker and warmer on average for warm ENSO years than for cold years, whereas occurrence of highly disturbed situations of the vortex such as SSWs is more frequent (or as frequent) for cold ENSO years. For this purpose, we utilize the reanalysis and also the HC data. The HC experiments were conducted by the JMA using March, 2011 version of the 1-month ensemble prediction system. The ensemble predictions were made from each of the 10th, 20th, and last day of each month for 1979-2009, with an ensemble size of five.

In the analysis data (real world), we first confirm the existing results that the polar vortex changes in the time mean states and variability with ENSO. Then, we find that the frequent occurrence of disturbed situations for cold ENSO years is mainly contributed by a couple of SSWs (e.g., those in 1984/85 and 2005/06 winters). These SSWs occur with moderate upward propagation and marked poleward propagation of wave activity under the easterly condition of the QBO.

In the HC data, we further show that, when initialized about 10 to 20 days before the SSWs, the data only roughly reproduce such propagation features and underestimate (or miss) the deceleration of the polar night jet. These features of the wave propagation are therefore the key for the HC data to well reproduce the SSWs, and hence the ENSO induced changes in the stratospheric variability as observed.

キーワード: 成層圏, ENSO 変化, 突然昇温, 準二年周期振動

Keywords: stratosphere, ENSO-induced changes, stratospheric sudden warming, QBO

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-P02

会場:コンベンションホール

時間:5月20日18:15-19:30

南極昭和基地における気球分離式無人航空機によるエアロゾル鉛直分布観測・新しい成層圏観測プラットホームの開発・

Observation of aerosol profiles using balloon separated Unmanned Arial Vehicle at Syowa Station, East Antarctica

林 政彦 ^{1*}, 東野伸一郎 ², 梅本紫衣奈 ¹, 尾塚馨一 ¹, 執行いずみ ¹, 西村太貴 ², 長崎秀司 ² Masahiko Hayashi^{1*}, HIGASHINO, Shin-ichiro², UMEMOTO, Shiina¹, OZUKA, Keiichi¹, SHIGYO, Izumi¹, NISHIMURA, Motoki², NAGASAKI, Shuji²

Boundary regions in the upper atmosphere play important roles in the global budget of material and energy. It is difficult to perform in-situ observations and sample recovery in/from the regions. There are some platforms for them, airplane, balloon, rocket and so on. They require heavy loads and/or cost for observations.

Small Unmanned Aerial Vehicle (UAV) is one of the most cheap and mobile platforms. Recent developments of electronic devices, microcomputer, and navigation system have been drastic and it supports to develop many types of small UAV. On the other hand, a small rubber balloon is very cheap and useful to lift instruments to upper atmosphere. We started to develop new type of platform, combined a balloon and an UAV. In the first stage, an UAV is hanged and lifted by a rubber balloon to the stratosphere. Aerosol instruments borne in UAV observe aerosol concentration and collect sample during ascending. At the top altitude, planned to separate position, UAV cut hanging rope and return to ground base with instruments and sample by self-control with micro-computer system.

We performed aerosol observations upto 10 km a.s.l. at Syowa Station (69.0 oS, 39.6 oE) in January 2013, as one program of the 54th Japanese Antarctic Research Expedition. Five successful flight were carried out and observe vertical profiles of aerosol concentration ranging from 0.3 to 11.4 um in diameter, and collect sample up to 8 km a.s.l.. Tropopause is locate around 8 to 10 km a.s.l over Syowa Station in summer season.

We are planning to develop more advanced platform, using balloon, parachute, and UAV, which can realize observation up to 30 km.

We will report details of the developed new type of platform and preliminary results of aerosol observations at Syowa Station.

キーワード: 気球分離式無人航空機, 成層圏エアロゾル, 南極

Keywords: balloon seperated UAV, stratospheric aerosol, Antarctica

¹ 福岡大学理学部, 2 九州大学大学院工学研究院

¹Fukuoka Univ., ²Kyushu Univ.

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-P03

会場:コンベンションホール

時間:5月20日18:15-19:30

JEM/SMILES L2 プロダクト v2.x での改訂状況: 中間圏 O3, HCl プロファイルの改善

Üpdates of JEM/SMILES L2Product v2.4: improvements of mesospheric O3 and HCl profiles

光田 千紘 ^{1*}, 鈴木 睦 ², 眞子 直弘 ³, 西本 絵梨子 ², 内藤 陽子 ⁴, 高橋 千賀子 ¹, 今井 弘二 ⁵, 佐野 琢己 ², 塩谷 雅人 ⁶ Chihiro Mitsuda^{1*}, Makoto Suzuki², Naohiro Manago³, Eriko Nishimoto², Yoko Naito⁴, Chikako Takahashi¹, Koji Imai⁵, Takuki Sano², Masato Shiotani⁶

 1 富士通エフ・アイ・ピー株式会社, 2 宇宙航空研究開発機構, 3 千葉大学 環境リモートセンシング研究センター, 4 京都大学 大学院理学研究科, 5 株式会社 とめ研究所, 6 京都大学 生存圏研究所

¹Fujitsu FIP Corporation, ²Japan aerospace exploration agency, ³Center of Environmental Remote Sensing, Chiba Univ., ⁴Graduate School of Science, Kyoto Univ., ⁵TOME R&D Inc., ⁶Research Institute for Sustainable Humanosphere, Kyoto Univ.

SMILES (Superconducting Submillimeter-Wave Limb-Emission Sounder) は 宇宙航空研究開発機構と情報通信研究機構の共同ミッションであり、2009/10/12 から翌年 04/21 まで 約半年間、国際宇宙ステーションから大気サブミリ波の観測を行った (Kikuchi et al., 2010)。SMILES は豊富な電力を活かして 4K 級機械式冷凍機と超伝導ミクサを用い、ノイズ 0.4 K 以下と高精度のデータを取得した。標準プロダクトは 11 種 (O3, HCl, ClO, HNO3, CH3CN, HO2, HOCl, BrO and O3 isotopes (17000, 01700, 18000))であり、2012 年春、一般向けへ v2.1 の提供を開始した。SMILES で最も感度が高い O3 については衛星、モデルとの比較による検証 (Imai et al., 2012, Submitted to JGR.) がすでに進んでいる。また国際宇宙ステーションの太陽非同期軌道を活かした日変化分布を観測しており、日変化成分の研究 (例えば Sakazaki et al., 2013, JGR) に用いられている。

最新バージョン v2.4 は 2013 年春に提供予定である。v2.1 以降の改訂では、中間圏プロファイルの改善をターゲットの 1 つとした。

v2.1 の O3 では、76 km 以上で 0.05 ppm 以上のプロファイルの振動がみられた。これはリトリーバル設定が不適切であったことが原因である。O3 のアプリオリプロファイルは MLS v2.2 データを昼夜別で平均した月及び帯状平均プロファイルを用いているが、約 75 km 以上では useful range を外れ、値の信頼性が低い。リトリーバル範囲外の 85 km 以上ではアプリオリ値をそのまま参照しているが、SMILES での感度はより高高度まであるため、アプリオリの誤差は、その下の層での誤差を発生させていた。v2.4 ではリトリーバル高度を 120 km まで拡大し、またアプリオリプロファイルおよびエラーの調整を行った。その結果、振動が抑制され、SABER をはじめとする衛星データでみられる上部中間圏での濃度ピーク (Smith et al., 2013, submitted to JGR) が SMILES でも導出できるようになるなどの改善がみられた。

HCI では、O3 と同様にリトリーバル高度範囲を $100~\rm km$ まで広げた。それ以外にも $50\rm km$ 付近で 2% 程度の振動が v2.4 では抑制されている。これは 2 つの要因がある。 $1~\rm kl$ 点目は、装置チームによる AOS 応答関数を改訂である。解析方法の変更により信号抽出の精度を上げ、信号の裾野まで考慮したことにより HCI の振動が半分程度に抑制された。 $2~\rm kl$ 点目は、逆解析問題の解法に従来の optimal estimation method に加えて Tikhonov reguralization method を導入したことである。これにより、HCI プロファイルの平滑化が行われ、振動が改善された。

キーワード: SMILES, きぼう, オゾン, 中間圏, 国際宇宙ステーション Keywords: SMILES, JEM, Ozone, mesosphere, ISS

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-P04

会場:コンベンションホール

時間:5月20日18:15-19:30

JEM/SMILES と ACE-FTS による北極成層圏オゾン破壊過程の解析 Analysis of Arctic stratospheric minor gases related to ozone depletion by coupled use of JEM/SMILES and ACE-FTS

橘 友仁 ^{1*}, 齋藤尚子 ¹, 杉田 考史 ², 笠井康子 ³ Yuji Tachibana ^{1*}, SAITOH, Naoko ¹, Takafumi Sugita ², KASAI, Yasuko ³

1 千葉大学環境リモートセンシング研究センター, 2 国立環境研究所, 3 情報通信研究機構

¹Center for Environmental Remote Sensing, Chiba University, ²National Institute for Environmental Studies, ³National Institute of Information and Communications Technology

国際宇宙ステーション「きぼう」日本実験棟に搭載された超電導サブミリ波リム放射サウンダ(SMILES; Superconducting Submillimeter-Wave Limb-Emission Sounder)は、超電導技術を搭載したこれまでにない高感度なセンサーであり、2009年10月12日から2010年4月21日までの約半年間にわたり、成層圏および中間圏で、今まで高感度で観測することの出来なかったCIOを含む大気微量成分を従来のセンサーと比べて十倍程度の高い精度で観測した。また同時期に、SCISAT-1に搭載されている(ACE-FTS; Atmospheric Chemistry Experiment - Fourier Transform Spectrometer)は、2004年3月11日から現在まで、上部対流圏と成層圏の気温や様々な大気微量成分を太陽掩蔽法で観測している。本研究では、SMILESの研究プロダクト(L2r プロダクト)と ACE-FTS データを用いて、2009/2010年北極成層圏のオゾン関連物質間の相関関係と高感度で観測された実測値のみでの「CI Partitioning」の時間変化について解析を行った。

まず、SMILES で観測された CIO と ACE-FTS で観測された HCI、NOy、CIONO2、N2O の北緯 50-65°の高度分布の解析から、1 月と 2 月においての極渦内外での CIO と HCI と CIONO2 の濃度差が高度 18-28 km で最も大きくなることがわかった。次に、気温と各微量成分との関係を調べるために、水蒸気の凝結温度 (Tice)を計算し、最も極渦内外で濃度差が大きかった高度 20.5 km で各微量成分との相関について調べた。2010 年 1 月において、高度 20.5 km においてはその場の気温から計算した Tice を引いた T-Tice が 15 K以下になると、各微量成分 (HCI、NOy、CIONO2、CIO)に急激な濃度変化が見られ、等価緯度が 70°N以上の領域で最も濃度変化が顕著であった。これは PSCs 粒子上での不均一反応によって引き起こされたと示唆される。次に、ACE-FTS で観測された N2O と各微量成分の相関を調べた。2009年11月には両者に一対一の相関が見られるが、2010年1月と2月にはそれとは異なる相関が見られた。このことから、1月と2月に見られる微量成分の濃度変化は化学的な要因によって引き起こされたといえる。さらに、SMILESで観測されたCIO と HOCI と ACE-FTS で観測された HCI と CIONO2 の冬春季間の極渦内における「CI Partitioning」の時間変化について解析を行った。PSCs が発生する前と考えられる 2009年11月においては、各微量成分に大きな変化は見られない。2010年1月初旬に HCI と CIONO2 の濃度が減少し、1月中旬に CIO 濃度が急激に増加する。1月下旬には CIO 濃度は減少、HCI 濃度は増加、CIONO2 濃度は増加する。2010年2月と3月には、CIONO2 濃度が PSCs 発生前の濃度よりも高くなる現象も確認できた。本講演では、さらに詳細に「CI Partitioning」について調べた結果について報告する。

キーワード: 成層圏大気微量成分, オゾン破壊, リモートセンシング

Keywords: startospheric minor gases, ozone depletion, remote sensing

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-P05

会場:コンベンションホール

時間:5月20日18:15-19:30

Correlation among water vapor and ozone as observed from Aura/MLS Correlation among water vapor and ozone as observed from Aura/MLS

Vivek Panwar^{1*}, H. Hashiguchi¹, M. K. Yamamoto¹, S. K. Dhaka² Vivek Panwar^{1*}, H. Hashiguchi¹, M. K. Yamamoto¹, S. K. Dhaka²

We present a relationship between water vapor mixing ratio (WV) and ozone mixing ratio (O3) measured by Aura/MLS in the tropical upper troposphere and lower stratosphere during 2005-10. Seasonal variability is analyzed in WV and O3 using MLS data. During summer (April-September) WV and O3 scatter plots are used to examine the relationship between them at different pressure levels. Around 100 hPa and above, it seems that there is an increasing linear tendency between WV and O3 with a high correlation coefficient. However, during winter (October-March) it seems that there is an association between WV and O3 but comparatively lesser than summer. From the scatter plots of WV and O3, it appears that during convection WV is injected from troposphere to lower stratosphere in the tropical region. However, the increasing amount of O3 and WV just above tropopause appears that it is dynamically controlled during summer. The O3 values are in general high during summer as compared to winter and are larger by a factor of ~2 while at 68hPa WV values are high during winter by a factor ~1-2. The temperature during summer show high values as compared to winter above tropopause. Our analysis suggests that there is a need to study jointly O3 and WV that would help in better understanding the transport in the TTL region and above.

キーワード: Tropical Tropopause Layer, Water Vapor, Ozone Keywords: Tropical Tropopause Layer, Water Vapor, Ozone

¹Research Institute of Sustainable Humanosphere, Kyoto University, Japan, ²Department of Physics and Electronics, Rajdhani College, University of Delhi, India

¹Research Institute of Sustainable Humanosphere, Kyoto University, Japan, ²Department of Physics and Electronics, Rajdhani College, University of Delhi, India

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-P06

会場:コンベンションホール

時間:5月20日18:15-19:30

SMILES によるオゾン及び塩素化合物観測データの検証 Validation of ozone and chlorine compounds data observed by SMILES

今井 弘二 1 , 鈴木 睦 1 , 佐野 琢己 1* , 光田 千紘 2 , 眞子 直弘 3 , 内藤 陽子 4 , 秋吉 英治 5 , 塩谷 雅人 6 Koji Imai 1 , Makoto Suzuki 1 , Takuki Sano 1* , Chihiro Mitsuda 2 , Naohiro Manago 3 , Yoko Naito 4 , Hideharu Akiyoshi 5 , Masato Shiotani 6

 1 宇宙航空研究開発機構, 2 富士通エフ・アイ・ピー株式会社, 3 千葉大学環境リモートセンシング研究センター, 4 京都大学大学院理学研究科, 5 国立環境研究所, 6 京都大学生存圏研究所

The Superconducting Sub-millimeter Limb-emission Sounder (SMILES) onboard Japan Experiment Module (JEM) of the International Space Station (ISS) have observed atmospheric minor constituents related with ozone chemistry, such as O₃, HCl, ClO, HO₂, HOCl and BrO, with high sensitivity. Especially, O₃, HCl and ClO can be detected with altitude up to the mesosphere (around 80km). In comparison with the stratosphere, "in situ" photochemistry controls concentration of minor constituents, so that we can examine current understanding of whole atmospheric chemical reactions by the direct comparison with SMILES observational data and results from numerical model calculations. In this study, we report the characteristics of ozone and chlorine compounds in stratosphere and mesosphere observed with SMILES instrument. Some results of comparative validation with past satellite data and numerical model calculations, and their characterisics of diurnal variation are also presented.

キーワード: 成層圏, 中間圏, 日変化, オゾン, リムサウンディング, サブミリ波

Keywords: stratosphere, mesosphere, diurnal variation, ozone, limb sounding, submillimeter wave

¹Japan Aerospace Exploration Agency, ²Fujitsu FIP Corporation, ³Center for Environmental Remote Sensing, Chiba University, ⁴Graduate School of Science, Kyoto University, ⁵National Institute for Environmental Studies, ⁶Research Institute for Sustainable Humanosphere

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-P07

会場:コンベンションホール

時間:5月20日18:15-19:30

Characteristic of Vertical Wavenumber Spectra in The Lower Stratosphere Observed with COSMIC GPS Radio Occultation
Characteristic of Vertical Wavenumber Spectra in The Lower Stratosphere Observed with COSMIC GPS Radio Occultation

Noersomadi Noersomadi¹, Toshitaka Tsuda^{2*} Noersomadi Noersomadi¹, Toshitaka Tsuda^{2*}

Vertical wavenumber spectra of atmospheric temperature perturbations in the lower stratosphere were analyzed by using COS-MIC GPS Radio Occultation data. This study used high resolution profiles from January 2007 to December 2009 derived from the Full Spectrum Inversion retrieval method (Tsuda, et.al., 2011). The height range between 20 to 27 km was selected considering the atmospheric conditions are relatively stable over the entire latitude range. We investigated latitude variations of spectra over two longitude regions; 90 to 150 and 170 to 230 degree east, considering land and ocean distributions. The logarithmic spectral slope of temperature perturbations in the equator region agrees with the model spectrum throughout the year showing saturated gravity wave due to convective activity. It has been depicted an annual variation in the spectral slope at mid latitude in northern hemisphere, which is close to -3 in winter and gradual (-2.4 to -2.7) in summer. It also found an annual variation at mid latitude in southern hemisphere, which behaves differently from northern hemisphere, showing a latitudinal drift of the region southward (from 20S to 60S) from May through October. These variations are related with jet stream as described from zonal wind data. We calculated the moving average of z-score value that showed good correlation between temperature variance, spectral slope, and zonal wind.

 \pm – \neg – \vdash : vertical wavenumber spectra, temparature perturbations Keywords: vertical wavenumber spectra, temparature perturbations

¹National Institute of Aeronautic and Space (LAPAN), Indonesia, ²RISH Kyoto University

¹National Institute of Aeronautic and Space (LAPAN), Indonesia, ²RISH Kyoto University

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-P08

会場:コンベンションホール

時間:5月20日18:15-19:30

Global Structure of Brunt Vaisala Frequency as revealed COSMIC GPS Radio Occultation Global Structure of Brunt Vaisala Frequency as revealed COSMIC GPS Radio Occultation

Noersomadi Noersomadi¹, Toshitaka Tsuda^{2*} Noersomadi Noersomadi¹, Toshitaka Tsuda^{2*}

COSMIC GPS RO data were utilized to investigate the atmospheric stability through deriving Brunt Vaisala frequency (N^2) from temperature profiles. N^2 is calculated using 100 m height difference and averaged into 1 km resolution. Height versus latitude section of N^2 showed the sharpness of tropopause layer. It depicted a very stable condition of the stratosphere layer. The deviation of N^2 in the equator region pronounced clearly relation with QBO phase. Time variations of the structure of N^2 in the stratosphere of polar region between northern hemisphere (NH) and southern hemisphere (SH) are quiet different. An annual oscillation is described in the SH showing the polar night jet during winter season, whereas in winter season of NH the atmospheric stability are influenced by sudden stratosphere warming. An annual oscillation is also depicted in the equator region through time versus longitude diagram of N^2 at 17 km that represent the fluctuation of tropopause layer. Time longitude diagram over 30N latitude at 15 km for the global region showed eastward propagation of atmospheric waves.

キーワード: Brunt Vaisala frequency, COSMIC, GPS RO Keywords: Brunt Vaisala frequency, COSMIC, GPS RO

¹National Institute of Aeronautic and Space (LAPAN), Indonesia, ²RISH Kyoto University

¹National Institute of Aeronautic and Space (LAPAN), Indonesia, ²RISH Kyoto University