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The standard scenario of solar system formation and its problems
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The solar system consists of planets, their satellites and rings, and a huge number of minor bodies. The planets can be classifi
into three groups: terrestrial planets (Mercury, Venus, Earth and Mars), gas giants (Jupiter and Saturn), and ice giants (Urant
and Neptune). These groups differ from one another by compositions, masses, and orbital radii. The terrestrial planets are lig
rocky ones with relatively small orbital radii, the gas giants are heavy planets with main components of hydrogen and helium
gas in the middle of the solar system, and the ice giants are moderately massive with main components of water, methane, a
ammonia ice in distant regions. These planetary orbits are nearly circular and coplanar, which suggests that the solar system w
formed from a protoplanetary disk around the proto-sun.

The basic framework of the standard scenario for solar system formation was established in 1960’s to 1980's. In the standar
scenario, the solar system forms from a protoplanetary disk around the proto-sun that is a by-product of star formation an
consists of gas and dust. The formation scenario can be divided into three stages: (1) formation of planetesimals from dust, (
formation of protoplanets from planetesimals, and (3) formation of planets from protoplanets. In stage (1), planetesimals forn
from dust in the protoplanetary disk. Planetesimals are small building blocks of solid planets. Planetesimals grow by mutua
collisions to protoplanets or planetary embryos in stage (2). The final stage (3) depends on a type of planets. The final stage
terrestrial planet formation is giant impacts among rocky protoplanets while sweeping residual planetesimals. Large protoplanet
capture a massive gas envelope by self-gravity to become gas giant planets. Ice giants are leftover icy protoplanets that fail
become gas giants. Though the standard scenario can explain the formation of the basic structure of the solar system physica
naturally, it has several serious unsolved problems such as planetesimal formation and timescale of giant planet formation. |
the present talk, | review the basic elementary processes of solar system formation and discuss the problems now the stand:
scenario is facing.
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Warm Debris Disks Probed by Mid-Infrared Observations
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Some main-sequence stars are known to have dust disks around them, which should be composed of second-generat
dust grains replenished during the main-sequence phase, rather than primordial dust from protoplanetary disks. These secot
generation dust grains are thought to have originated in collisions of planetesimals or during the destruction of cometary object:
giving the reason circumstellar dust disks around main-sequence stars are named "debris disks.” Debris disks are expected to
related to the stability of minor bodies and, potentially, to the presence of planets around stars. Debris disks are identified fron
the spectral energy distributions of stars that show an excess over their expected photospheric emission at infrared wavelengtl
since circumstellar dust grains absorb the stellar light and re-emit mainly in the IR region. After the discovery of the first sample
of debris disk, Vega, more than 100 others have been identified from the IRAS catalogue. Most of the known debris disks only
show excess far-infrared emission. This excess comes from the thermal emission of dust grains with low temperatures, and is
analogue of Kuiper belt objects in the solar system. On the other hand, little is known to date about the warm debris disk materia
located close to the star, which should be an analogue of the asteroid belt in the solar system. Warm dust grains in the inner regit
of debris disks should have a more direct link to the formation of terrestrial planets than the low-temperature dust that has bee
previously studied.

To discover new warm debris disk candidates that show large 18 micron excess and estimate the fraction of stars with exces
we searched for point sources detected in the AKARI/IRC All-Sky Survey, which show a positional match with A-M dwarf stars
in the Tycho-2 Spectral Type Catalogue and exhibit excess emission at 18 micron compared to expected photospheric level. In t
presentation, we report initial results of the survey of warm debris disks around main-sequence stars based on the AKARI/IR(
All-Sky Survey.

We also report the discovery of an intriguing debris disk toward the F3V star HD 15407A in which an extremely large amount
of warm fine dust is detected. The dust temperature is derived as "500-600 K and the location of the debris dust is estimated «
0.6-1.0 AU from the central star, a terrestrial planet region. The luminosity of the debris disk is “0.5% of the stellar luminosity,
which is much larger than those predicted by steady-state models of the debris disk produced by planetesimal collisions. Th
mid-infrared spectrum obtained by Spitzer indicates the presence of abundant micron-sized silica dust, suggesting that the dt
comes from the surface layer of differentiated large rocky bodies.
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New frontier of chronology of the Solar System based on in-situ U-Pb dating
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Cratering chronology and evolution of the solar system
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Northwest Africa (NWA) 6704 is a very unusual ungrouped fresh achondrite. It consists of abundant coarse-grained (up to 1.t
mm) low-Ca pyroxene, less abundant olivine, chromite, merrillite and interstitial sodic plagioclase. Minor minerals are awaruite,
heazlewoodite, and pentlandite. Raman spectroscopy shows that a majority of the low-Ca pyroxene is orthopyroxene. Bulk majc
element abundances are nearly chondritic and distinct from those of howardite-eucrite-diogenites. Oxygen isotopic study demot
strated that 180/160 and 170/160 of this meteorite plot within the acapulcoite-lodranite field, but these meteorites differ in
mineralogy and geochemistry. These observations suggest that NWA 6704 originated on a distinct parent body from all othe
known meteorites. Here we report U-Pb chronology of the unique achondrite NWA 6704.

U-Pb dating was performed on nine 10?20 mg fractions of pyroxene. All fractions were washed 4-5 times in ca. 0.5 ml of 0.5
M HNO3. Subsequently, the fractions were washed twice with hot 6 M HCI, followed by twice washing with hot 7 M HNOS3.
All residues were spiked with mixed 202Pb-205Pb-229Th-233U-236U tracer. Spiked residues were digested in a HF+HNO:?
mixture, converted to a soluble form by repeated evaporation with 7 M HNO3, 6 M HCI, 9 M HBr, and dissolved in 0.3 M HBr.
The Pb separation was performed using 0.05 ml of anion exchange resin AG1x8 200?400 mesh. After the Pb separation, U al
Th were separated using 0.05 ml of UTEVA resin. Pb isotopes were measured on a TRITON Plus TIMS at the ANU. U and Th
isotopic analyses were carried out on a Neptune MC-ICPMS at the Australian National University.

Two residues yielded higher 206Pb/204Pb values (148 and 213) relative to the others (from 344 to 5494). Mod&Q6FERb
dates (assuming primordial Pb as initial Pb, and 238U/235U=137.88) for seven most radiogenic residue analyses with 206Pb/20:
more than 500 yielded a weighted average of 4563.34 +/- 0.32 Ma. The U-Pb discordance of residue analyses range from -3
to -6% for more radiogenic data, and up to -10% for the two residues that contain less radiogenic Pb. A Pb-Pb isochron for the
seven radiogenic residues yielded a radiogenic 207Pb/206Pb value (y-intercept of the regression line) of 0.62351+/-0.00017. Th
corresponds to a 207Pb/206Pb date of 4563.75 +/- 0.41 Ma, assuming a 238U/235U=137.88. Yet this assumption may be inval
likewise for Ca-Al-rich inclusions (CAIs) and basaltic achondrites. Hence, to establish an assumption-free reliable 207Pb/206P!
date, precise 238U/235U needs to be determined for this meteorite. Using, instead, the 238U/235U value of 137.79+/-0.02 (a
approximate estimate for most Solar System materials except CAls), yields the isochron age of 4562.80+/-0.46 Ma. This ag
estimate is valid unless 238U/235U in NWA 6704 is significantly lower than in the angrites and chondrites. Determination of the
238U/235U is in progress.

The estimated U-Pb age of NWA 6704 is substantially older than those of plutonic angrites, and only marginally younger
than those of quenched angrites. NWA 6704 is about 4-5 Ma younger than the CAls. Considering the old crystallization age, the
expected simple geologic history (suggested by nearly concordant U-Pb systems), the mineral assemblage including pyroxen
plagioclase, olivine, chromite and metal, and the considerable sample size (8.4 kg in total), NWA 6704 has the potential to serv
as a reliable reference point of various short-lived isotopic chronometers such as 26Al-26Mg, 53Mn-53Cr and 182Hf-182W
chronometers. A new reliable reference point is essential for checking uniform distribution of the short-lived radionuclides and
for building a consistent time scale of the early Solar System.
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The solar system was formed at 4.567 Ga; thus we can obtain the age from chondrules in a chondrite. On the other hand,
is well known that the earth was formed soon after the formation of the chondrites, but we cannot directly obtain the age of the
formation of the earth from materials on the earth. So far, the oldest rock in the world goes back to 4.03 Ga, and occurs in the
Acasta Gneiss Complex, Canada. The first five hundred million years of the history of the earth are still in dark. The Hadear
from the formation of the earth to the oldest age of rocks or geologic bodies is the most mysterious period because no rocks ar
geologic bodies are preserved at present except for the Hadean zircons only in several terranes, Western Australia, Canada, Ch
and Greenland [1]. But, the Hadean period is the most important because the early evolution in the Hadean possibly clinche
the evolution of the earth. In order to investigate the Hadean tectonics, we try to find the earliest Archean geologic terrane:
in the world. So far, the oldest geologic terranes comprise Acasta Gneiss complex, Akilia association in the West Greenlanc
Nuvvuagittuqg in Quebec, Canada, and Nain Complex in Labrador, Canada [2].

We made geological survey in the Nain Complex, and reinvestigated the occurrence of the supracrustal rocks and the rel:
tionship with the ambient orthogneisses. Because previous works focused on distribution of the supracrustal belts within the
orthogneisses, the detailed field occurrence of the supracrustal rocks within the belts is still ambiguous. Therefore, we focus o
their internal structures.

Although the supracrustal belts are repeatedly intruded by granitic intrusions with some ages and their original structures ar
obscured, their lithostratigraphies are relatively well preserved in Nulliak, Big and Shuldham islands and St Jones Harbor. The
supracrustal belts in Nulliak Island and Big Island comprise ultramafic rocks, mafic rocks and mafic sediments intercalated witt
banded iron formations in ascending order. In the St. Jones Harbor, it is composed of ultramafic rocks, mafic rocks, bande
iron formation, and clastic sediments, intercalated with chert in the middle and with bedded carbonate rocks in the upper par
in ascending order. In the Shuldham Island, it consists of ultramafic rocks, layered gabbro with precursors of plagioclase an
pyroxene accumulation layers, mafic rocks and psammitic sediments in ascending order.

Recently, we found 3.956 Ma zircons from the Nanok Gneiss, intruding the supracrustal rocks in the St. Jones Harbor area [3
So far, the host rock including the zircons is the second oldest rock in the world. Because no supracrustal rocks are found in th
Acasta Gneiss Complex, the Nulliak supracrustal rocks are the oldest supracrustal rocks in the world. The discovery of the olde:
supracrustal rocks opens the door to investigate the early evolution of the earth in the Hadean.

[1] Froude et al. (1983) Nature 304, 616-618; Nelson et al. (2000) EPSL 181, 89-102; Mojzsis & Harrison (2002) EPSL 202,
563-576; lizuka et al. (2006) Geology 34, 245-248; Wang et al. (2007) CSB 52, 3002-3010. [2] Bowring & Williams (1999)
CMP 134, 3-16; Nutman et al. (1996) Precamb. Res. 78, 1-39; O’Neil et al. (2008) Science 321, 1828-1831. [2] Shimojo et al.
(2012) abstract for Goldschmidt Conference 2012.
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Solar wind and cosmic-ray irradiation history of surface materials on small asteroid Itokaw
Solar wind and cosmic-ray irradiation history of surface materials on small asteroid Itokaw
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Surface materials of small asteroids are exposed to various energetic particles such as solar wind (SW), solar cosmic ra
(SCRs), and galactic cosmic rays (GCRs). SW particles (with energy of ca. keV per nucleon) are implanted into thin layer,
smaller than micro-m from the grain surface. SCRs are composed of more energetic solar particles (1-100 MeV per nucleon
whereas GCRs have even higher energies of larger than 0.1 GeV. The high energy protons from SCRs penetrate several ce
timeters, and GCRs penetrate up to 1 meter or more beneath the surface of asteroid. Nuclear reactions caused by these energ
cosmic rays can produce noble gases with characteristic isotopic compositions (cosmogenic noble gases) on their passages
solid materials. SW and cosmogenic noble gases can be easily identified because of their characteristic isotopic and elemen
compositions [1-4].

The Hayabusa samples are pristine undamaged grains collected from the unconsolidated surface of small asteroid Itokav
with micro-gravity. The samples are essentially different from other extraterrestrial materials such as micrometeorites (MMs)
and stratospheric interplanetary dust particles (IDPs) recovered on Earth. They have experienced frictional heating and ablatic
of the surface layer during passage through the atmosphere and have then suffered from contamination of terrestrial atmosphe
noble gases [5, 6].

We have measured noble gases for three Hayabusa grains [7] as an initial investigation, and are continuing for additione
Hayabusa samples as an international AO investigation (JAXA). They were olivine grains, and their sizes and weights were a
small as 40-60 micro-meter (SEM observation) and 0.05-0.1 micro-gram (estimation from their shapes and density of olivine),
respectively.

Variable amounts of light noble gases of SW origin were measured for the samples, which are clear evidences that the grair
had been exposed directly to SW particles on the uppermost surface of ltokawa. The detection of SW noble gases is relative
easy because of the high fluxes of SW-light noble gases (He, Ne and Ar). Observed abundances of SW gases in the samples co
be accumulated if they were exposed to SW particles for 100-1000 years [7].

On the contrary, cosmogenic noble gas isotopes were difficult to be detected for these tiny samples. Fluxes of SCR and GC
are much smaller than those of SW, and production rates of cosmogenic isotopes are very small, i.e., estimated production ra
by GCR in a single grain weighing 0.1 micro-g is as small as 3500 atoms /My. Even in the case, we can give an upper limit to the
time span of cosmic-ray irradiation (cosmic-ray exposure age) for each grain. Combining the produétida bf SCR and
GCR [8] we obtained 8 My as an upper limit for the RA-QD02-0065 sample [7]. These data can provide unique chronological
information about the grains in surface layer of small asteroids.

References: [1] Wieler (2002) Rev. Mineral. Geochem. Vol. 47, 21-70. [2] Ott (2002) Rev. Mineral. Geochem. Vol. 47, 71-100.
[3] Swindle (2002) Rev. Mineral. Geochem. Vol. 47, 101-124. [4] Wieler (2002) Rev. Mineral. Geochem. \Vol. 47, 125-170. [5]
Nier and Schlutter (1990) Meteoritics 25, 263-267. [6] Osawa et al. (2003) Antarct. Meteorite Res. 16, 196-219. [7] Nagao et al.
(2011) Science 333, 1128-1131. [8] Hohenberg et al. (1978) Proc. Lunar Planet Sci. Conf. 9th, 2311-2344.
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A K-Ar dating instrument for future in-situ dating on planetary surfaces

0Oo000 ™ 00002 0000380000¢4
Yuichiro Chd*, Yayoi N. Miura?, Tomokatsu Morotd, Seiji Sugitd

!Dooo 000000 O00000000,2000000000,300000,{00000000000000 00
goooo

IDept. Earth & Planetary Science, Univ. Toky&arthquake Research Institute, Univ. TokyNagoya University:Dept. Com-
plexity Science & Engineering, Univ. Tokyo

Surface retention age is one of the most fundamental observables in planetary science. Crater chronology is often used to es
mate the timing of geologic events. For example, crater counting on lunar maria revealed most of the mare basalts were emplac
3.5 Gyr ago, while the latest eruptions occurred 1-2 Gyr ago mainly in the Procellarum KREEP Terrane [Hiesinger et al., 2004;
Morota et al., 2011]. The absolute age determination relies on correlation between crater number density and age (chronolog
function), which is calibrated with the radiometric ages of the samples due to the Apollo and Luna missions [e.g., Neukum,
1983]. Since there are no returned samples showi8® Ga and 3.0-1.0 Ga, however, the chronology curve has 0.5-1 Gyr of
uncertainty in this range. To determine the shape of the chronology function is important not only for accurate age determinatiot
but also for understanding the temporal variation of the impact flux to the Earth-Moon system. For example, whether or not
the impact flux has a spike around 3.9 Gyr ago, namely the lunar cataclysm hypothesis, is one of the main issues regarding tt
uncertainties of the impact flux [e.g., Gomes et al., 2005].

In-situ age measurements and/or sample-return mission(s) are needed to resolve this problem. We have been developing
in-situ dating method using K-Ar system for future planetary landing missions on the Moon or Mars [Cho et al., 2011, 2012].
The K-Ar dating method employs radiometric decay of 40K into 40Ar with half-life of 1.25 Gyr [Steiger & Jager, 1977]. This
method requires much less technological developments than other dating methods, such as Ar-Ar, U-Pb, and Sm-Nd datin
because K is relatively abundant (100 ppm-1 wt%) in the igneous rocks and Ar can be easily extracted (i.e., simply heat the
sample). This leads to a simpler instrumental configuration. Our system measures the abundance of both K and Ar at the san
laser irradiation spot on a sample using with two techniques (i.e., laser-induced breakdown spectroscopy (LIBS) and quadrupo
mass spectrometer (QMS)). Potassium and argon are extracted from a sample simultaneously by the laser ablation, in which t
sample is vaporized by a series of intensel(GW/cm?2) laser pulses.

Using our instrument, we measured three samples whose K concentrations and ages have been measured previously w
flame photometry and a sector mass spectrometer: a hornblende (K20=1.12 wt%, 1.75 Ga), a biotite (K20=8.44 wt%, 1.79 Ga
and a plagioclase (K20=1.42 wt%, 1.77 Ga) [Nagao, unpublished data]. We obtained the model ages of 2.1+/-0.3, 1.8+/-0.Z
and 2.0+/-0.3 Ga, respectively. We measured K20 with a calibration curve constructed by measuring 24 geologic samples wit
known K20 concentration. The absolute amount of the extracted Ar is measured with the QMS. The sensitivity to Ar isotopes
was calibrated by introducing the known amount of atmospheric Ar into the experimental system.

Since the three samples have similar ages and different K concentrations, we should be able to construct a "virtual” isochrol
by plotting the concentrations of K and 404y. The slope of the isochron simulated with our experimental data yields 1.34 Ga
of age. The data with known values yields 1.79 Ga. Such underestimation probably results from both overestimation for K anc
underestimation for 40Ar in the biotite data, which have large weight for the regression. Nevertheless, a clear correlation be
tween [K] and [40Ar..4] is observed. Although further improvement in the accuracy of our measurements is necessary, the data
obtained in this study demonstrate that our LIBS-QMS method can reproduce the trend essential for quantitative isochron-base
age measurements.

0o0o0d0O:00b00bo0,K-Ar00,goooad
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