(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-01 会場:423 時間:4月28日11:00-11:25 インド洋における国際集中観測を通して得られた MJO 研究の最前線 What the recent international field campaign in and around the Indian Ocean has advanced our knowledge of the MJO? 米山 邦夫 ^{1*} YONEYAMA, Kunio^{1*} 1海洋研究開発機構 2011年10月から2012年1月にかけて中部熱帯インド洋を中心に行われたMJO対流の発生メカニズムの解明をメインターゲットにした国際集中観測を通して得られた、現在までの最新の知見を主に観測の観点から紹介する。4カ月の集中観測期間中に同海域では3つのMJO対流現象の発生を観測した。ただし、現在MJO対流域の同定にもっとも利用されているWheeler and Hendon (2004)によるMJOインデックスでは12月のイベントが同定されないという特徴が興味深い。中部インド洋に展開した収支解析のためのラジオゾンデ観測網のデータなどから、従来指摘されている鉛直方向に段階的な湿潤傾向を確認する一方で、MJO対流発生前に南半球側に存在した熱帯収束帯からの雲域の北進、大規模雲域に対するロスビー応答などによる亜熱帯からの乾燥空気の侵入、インドネシア海大陸域で活発化した対流の西進、などいずれも水平移流がMJO対流発生に重要な役割を担っていることを示す結果が得られている。プロジェクト終了から2年が経つ2014年1月末現在で約30編の論文がでているが、当初の研究計画で予想していたもの、まったく予想していなかったものなど、プロジェクト全体の計画からいくつか代表的なものについても紹介する。 キーワード: マッデン・ジュリアン振動, CINDY2011 Keywords: Madden-Julian Oscillation, CINDY2011 ¹JAMSTEC (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-02 会場:423 時間:4月28日11:25-11:40 Mesoscale Convective Complex Activities over Indian Ocean and Their Effects on Convections Over Sumatera Island Mesoscale Convective Complex Activities over Indian Ocean and Their Effects on Convections Over Sumatera Island - -, Trismidianto^{1*}; HADI, Tri wahyu²; KODAMA, Yasu-masa¹ - -, Trismidianto^{1*}; HADI, Tri wahyu²; KODAMA, Yasu-masa¹ Effects of Mesoscale Convective Complexes (MCC) over Indian Ocean on convections over Sumatera Island have been investigated using Multi-functional Transport SATellite (MTSAT) infrared (IR1) imageries, Tropical Rainfall Measuring Mission (TRMM) rainfall data and Cross-Calibrated Multi-Platform (CCMP) surface wind data of 10-year period (2000-2009). Occurrences of MCC were identified using an algorithm that combines criteria of cloud coverage, eccentricity, and cloud lifetime. This study begins with a case study on 16 to 17 August 2005 and 27 to 28 October 2007 to show the evolution of MCC, we found the development phase of MCC was accompanied by surface wind convergence, while wind divergence was clearly seen below decaying MCC. Following the decay of MCC, convective activities were observed in the surrounding regions by the presence of a new convective cell around the MCC, indicating the role of cold pool mechanism. The new convective cell was generated from cold pool affect convective clouds in the surrounding area and propagate to over Sumatra Island so causing extreme rainfall over Sumatra. The correlation between MCC and convection over Sumatera was further investigated by performing composite analysis using more samples of MCC events. During the 10-year period, about a number of 553 MCC events have been identified over Indian Ocean. However, it is of interest to that MCC events tend to occur with significantly higher frequency during the monsoon transition season of March- April-May (MAM) period. Available data suggest that the life cycle of MCC over Indian Ocean is about 12 to 15 hours. Results of composite analyses confirmed that the MCC have significant influence on the development of cloud convection over Sumatera Island by means of cold pool propagation mechanism. This seems to imply that weather observations over the western Indian Ocean are crucial for rainfall prediction in Sumatera regions. キーワード: Cold Pool, MCC, Convection, Rainfall Keywords: Cold Pool, MCC, Convection, Rainfall ¹Meteorological Laboratory, Graduate School of Science and Technology, Hirosaki University, ²Departement of Earth Sciences, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung ¹Meteorological Laboratory, Graduate School of Science and Technology, Hirosaki University, ²Departement of Earth Sciences, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-03 会場:423 時間:4月28日11:40-11:55 #### Observed moisture variations associated with shallow convection Observed moisture variations associated with shallow convection BELLENGER, ${\rm Hugo^{1*}}$; KATSUMATA, Masaki 1 ; YONEYAMA, Kunio 1 ; NISHIZAWA, Tomoaki 2 ; YASUNAGA, Kazuaki 3 ; SHIROOKA, Ryuichi 1 BELLENGER, $\dot{\rm Hugo^{1*}}$; KATSUMATA, Masaki 1 ; YONEYAMA, Kunio 1 ; NISHIZAWA, Tomoaki 2 ; YASUNAGA, Kazuaki 3 ; SHIROOKA, Ryuichi 1 The variability of tropospheric moisture is a key feature of tropical climate. In particular, the importance of moisture variations due to convective transport is still to be quantified on a variety of spatial and temporal scales. For instance, there is a debate on the importance of moisture convective transport in preconditioning the atmosphere prior to deep convection development associated with the Madden–Julian Oscillation (MJO). We use here high frequency observations of humidity and convection in the Indian Ocean by lidars and radars on board the R/V Mirai during the CINDY/DYNAMO campaign. Significant moisture variations on the scale of few hours are observed within the first first kilometers of the atmosphere in association with shallow convective and congestus clouds. We then compare these local tendencies with large–scale ones and discuss the potential importance of convective transport by convection in the moisture budget during the transition from convectively suppressed to convectively active periods. キーワード: Convection, moisture, MJO, CINDY/DYNAMO, preconditionning, observation Keywords: Convection, moisture, MJO, CINDY/DYNAMO, preconditionning, observation ¹JAMSTEC, ²NIES, ³University of Toyama ¹JAMSTEC, ²NIES, ³University of Toyama (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-04 会場:423 時間:4月28日11:55-12:10 西部熱帯太平洋で観測された海洋表層 10m の詳細水温変動とそれに伴う大気変動 In-situ observed detailed temperature profile in surface 10-meter layer over the tropical western Pacific 勝俣 昌己 1*; Bellenger Hugo1; 米山 邦夫 1 KATSUMATA, Masaki^{1*}; BELLENGER, Hugo¹; YONEYAMA, Kunio¹ 海洋表層数メートルの熱的分布は海面水温 (SST) に直接影響し、大気海洋間のエネルギー交換を左右する。この領域の詳細水温構造を把握するため、研究船「みらい」によるサーミスターチェーン観測を、「みらい」MR13-03 航海における定点観測期間 (12N、135E、17 日間) に実施した。観測データは、明瞭な日変化パターン、すなわち表層数メートルの昼間の水温上昇やその後の高水温層の深まりと消滅、を示していた。一方、表層 1m 以浅における約 0.5K 程度の水温低下イベント (約 3 時間) も観測された。同時観測された気象データからは、冷気外出流を伴う降水システムがもたらす低水温の雨水の供給および弱風化による海洋鉛直混合の抑制がこの水温低下イベントをもたらしていると考えられた。 ¹海洋研究開発機構 $^{^{1}}$ JAMSTEC (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-05 会場:423 時間:4月28日12:10-12:25 CINDY2011 期間中に観測された急激な SST 冷却と海洋ロスビー波との関係 Abrupt cooling associated with the oceanic Rossby wave and lateral advection during CINDY2011 清木 亜矢子 ^{1*}; 勝俣 昌己 ¹; 堀井 孝憲 ¹; 長谷川 拓也 ¹; Richards Kelvin J.²; 米山 邦夫 ¹; 城岡 竜一 ¹ SEIKI, Ayako^{1*}; KATSUMATA, Masaki¹; HORII, Takanori¹; HASEGAWA, Takuya¹; RICHARDS, Kelvin J.²; YONEYAMA, Kunio¹; SHIROOKA, Ryuichi¹ 熱帯域において支配的な大気変動であるマッデン・ジュリアン振動(MJO)に伴う大気海洋変動メカニズムの解明を目的としたインド洋国際観測プロジェクト CINDY2011 が 2011 年秋~2012 年春に実施された。その中で研究船「みらい」は東経 80.5 度、南緯 8 度の中部南インド洋において約 2 ヶ月間の定点観測を行った。期間中、MJO に伴う大規模対流は10 月下旬と11 月下旬に発達し、11 月事例での赤道南側の対流活動は北側に比べ 1 週間ほど遅れて活発化した。11 月中旬、みらい観測において海洋表層の水温と塩分に急激な低下がみられた。この劇的な変化は、南インド洋を西進する海洋ロスビー波に伴う表層流の南西向きから西向き/西北西向きへの変化と関連していた。海洋混合層収支解析において、海面フラックスは海洋を暖める方向に働いており、今回の急激な冷却事例への寄与は小さかった一方で、水平移流は大きな役割を担っていた。一般的に暖水ロスビー波は水温躍層を押し下げ海面水温を高くする傾向にあるが、今回はロスビー循環に伴う移流の効果によって冷却をもたらしたと考えられる。また、この冷たい表層水温が MJO 発達における初期対流を抑制し、赤道南側における対流オンセットの遅れにつながった可能性がある。 キーワード: CINDY2011, SST 冷却, インド洋 Keywords: CINDY2011, abrupt cooling, Indian Ocean ¹海洋研究開発機構,2ハワイ大学 ¹Japan Agency for Marine-Earth Science and Technology, ²University of Hawaii (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-06 会場:423 時間:4月28日14:15-14:30 #### 赤道不安定波と乱流混合 Modulation of Equatorial Turbulence by Tropical Instability Waves 井上 龍一郎 1* ; リエン レン-チエ 2 ; モウム ジェームス 3 ; ペレス レネリス 4 ; グレッグ マイク 2 INOUE, Ryuichiro 1* ; LIEN, Ren-chieh 2 ; MOUM, James 3 ; PEREZ, Renellys 4 ; GREGG, Mike 2 1海洋研究開発機構、2ワシントン大学、3オレゴン州立大学、4マイアミ大学 Strong modulation of turbulent mixing by a westward propagating Tropical Instability Wave (TIW) was observed during October and November 2008 on the equator at 140°W in the stratified shear layer between the equatorial undercurrent (EUC) and the surface mixed layer. At these depths, the unique deep diurnal-cycle mixing in the stratified layer under the equatorial cold tongue was observed with nighttime turbulent mixing a factor of 10 greater than during daytime. The turbulent kinetic energy dissipation rate, ϵ , was $O(10^{-6}) \text{Wkg}^{-1}$, and the turbulent heat flux was $^{\circ}500 \text{ Wm}^{-2}$, at least 5-10 times greater than previously observed at the central equatorial Pacific. Turbulence mixing varied significantly during the four distinct phases of the meridional flow associated with the TIW: steady northward (~0.6 ms⁻¹), northward-to-southward transition, steady southward (~-0.6 ms⁻¹), and southward-to-northward transition. During the northward-to-southward transition, we observed the largest values of reduced shear squared (Sh²?4N²), where Sh² is the total shear squared and N² the buoyancy frequency squared, the thickest nighttime surface mixed layer, the deepest penetration of the deep-cycle turbulence, and the largest turbulent heat flux and largest integrated ϵ in the deep-cycle layer. During steady southward flow, the depth of the bases of the nighttime surface mixed layer and of the deep-cycle layer were shallowest. For the first time, a 50-m-thick layer of strong turbulence was observed immediately above the EUC core during the northward-to-southward and steady southward phases. The average ϵ exceeded 10-6 Wkg⁻¹, the eddy diffusivity was ~10⁻³ m²s⁻¹, and the turbulent heat flux was ~500 Wm⁻². It is likely that to accurately parameterize mixing in the central equatorial Pacific, numerical models must properly simulate not only the enhancement of mixing associated with TIWs but also the variability of mixing within individual TIWs. In this talk, some results from the extensive (from November 2008 to February 2009) mooring data set, comparisons with a general circulation model, and details of mixing events will also be shown. ¹JAMSTEC, ²University of Washington, ³Oregon State University, ⁴University of Miami (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-07 会場:423 時間:4月28日14:30-14:45 #### 太平洋暖水プール北部における大気海洋相互作用 Air-sea interaction over the northern edge of the Pacific wam pool 長谷川 拓也 ^{1*}; 永野 憲 ¹; 服部 美紀 ¹; 井上 知栄 ¹; 久保田 尚之 ¹ HASEGAWA, Takuya ^{1*}; NAGANO, Akira ¹; HATTORI, Miki ¹; INOUE, Tomoshige ¹; KUBOTA, Hisayuki ¹ ENSO メカニズムの理解は遅延振動子理論の提唱(1980 年代後半)によって、飛躍的に進歩したが、最近の研究では遅延振動子理論では説明できない経年スケールの大気海洋場の偏差が赤道外太平洋(太平洋暖水プール北端からフィリピン海)に存在することが指摘されており、この暖水プール北端周辺海域の変動が赤道域の大気海洋変動にが影響する可能性が指摘されている(western Pacific oscillator model など)。また、長周期変動(quasidecadal:QD 変動やより長期の変動)に関しても海面水温偏差などが、この海域に出現することが過去の研究から指摘されている(e.g., White et al. 2003; Hasegawa et al. 2013) さらに、フィリピン海では、夏季・冬季モンスーンやコールドサージ、北進 ISV、PJ pattern、熱帯低気圧などの短周期変動が存在することが指摘されており、フィリピン海は、様々な時間(および空間)スケールにおいて、air-sea interaction が盛んな海域であると考えられる。また、これらの現象はフィリピン海のみならずインド洋や、西部赤道太平洋や日本・アジアの極端気象現象・気候変動に関連していることが指摘されている(例えば PJ パターンを含む広域リンク:Nitta 1987; Xie et al. 2010)。 日本に影響を与える要因として黒潮続流域における小規模 air-sea interaction (hot spot)の研究が近年盛んに実施されているが、フィリピン海はその上流に位置しており、フィリピン海の変動が黒潮続流域の大気海洋変動のバックグランドとしての役割を果たす可能性がある。くわえて、複数の水塊や海洋流速ジェットなどのような特徴的な海洋変動場が存在する海域であることが過去のデータから示唆されている。 このように暖水プール北端やフィリピン海は、ENSOや他の現象の発生・発達に関連して、局所的のみならず海盆規模・全球規模の気象および気候変動に寄与する可能性がある。 しかしながら、北緯 10 度以北の暖水プール北端やフィリピン海は、大気海洋同時観測が長期的に実施されたことがなく、現在でも観測網の「空白域」となっている。また気候モデルの夏季モンスーン再現性も現実的ではないことが最近の研究で指摘されており(e.g., Inoue and Ueda 2009)、暖水プール北端およびフィリピン海における multi-scale air-sea interaction の実態は解明されていない。 本発表では、暖水プール北端およびフィリピン海における過去の研究のレビューや著者による最新の解析結果を示すとともに、当該海域における multi-scale air-sea interaction の実態解明に向けた将来の観測システムデザインなどについて議論することを目的とする。 キーワード: 太平洋暖水プール北部, 大気海洋相互作用, マルチスケール時空間変動 Keywords: norhtern edege of the Pacific warm pool, air-sea interaction, multi-scale temporal-spatial variability ¹ 海洋研究開発機構 ¹JAMSTEC (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-08 会場:423 時間:4月28日14:45-15:00 海面水温ナッジング法を用いたインド洋熱帯域の蓄熱量偏差の初期化 Why is initialization of heat content anomalies in the tropical Indian Ocean difficult in a CGCM with SST-nudging? 神山翼1;東塚知己2* KOHYAMA, Tsubasa¹; TOZUKA, Tomoki^{2*} 1 ワシントン大学、2 東京大学 We have evaluated oceanic initial conditions in the tropical Indian and Pacific Oceans prepared by a coupled general circulation model (CGCM) with a sea surface temperature (SST)-nudging scheme. It is shown that the heat content anomalies in the upper 150 m are generated extremely well in the Pacific even though only the SST data is incorporated. In contrast, the upper ocean heat content anomalies produced by the model have negative correlation coefficients over vast areas of the tropical Indian Ocean. We propose that this is due to a difference in the SST-outgoing longwave radiation (OLR) relationship between the Indian and Pacific Oceans; the use of SST-nudging generally assumes that correlation coefficients between SST and OLR are negative, but this is not necessarily true. The correlation coefficients between SST and OLR anomalies are negative in the central to eastern equatorial Pacific, and this feature is well reproduced in the model. As a result, equatorial zonal wind anomalies are well captured by the model, and forced equatorial Kelvin and Rossby waves are accurately reproduced. On the other hand, the model cannot capture the observed positive correlation coefficients in the eastern equatorial Indian Ocean, particularly from January to April. As a result, equatorial zonal wind anomalies tend to have an opposite sign and induce equatorial Kelvin and Rossby waves with a wrong sign. The positive correlation between SST and OLR is an outcome of remote influence, but this is more difficult to simulate in an atmospheric general circulation model (AGCM) and a CGCM with strong SST nudging, in which local air-sea interaction is not explicitly allowed. Since the results presented in this study is based on a single model, it will be interesting to check skills of other models in initializing the upper ocean heat content with an SST-nudging scheme. キーワード: インド洋熱帯域, 大気海洋結合モデル, 海面水温・外向き長波放射の関係, 海洋上層蓄熱量, 海面水温ナッジング法 Keywords: Tropical Indian Ocean, Ocean-atmosphere coupled model, SST-OLR relationship, Upper ocean heat content, SST-nudging ¹University of Washington, ²The University of Tokyo (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-09 会場:423 時間:4月28日15:00-15:15 #### 2種類のインド洋ダイポールモード現象に関する研究 Two flavors of the Indian Ocean Dipole 遠藤 理 1*; 東塚 知己 1 ENDO, Satoru^{1*}; TOZUKA, Tomoki¹ The Indian Ocean Dipole (IOD) is known as a climate mode in the tropical Indian Ocean accompanied by negative (positive) sea surface temperature (SST) anomalies over the eastern (western) pole and easterly wind anomalies along the equator during its positive phase. However, the western pole of the IOD is not always covered by positive SST anomalies throughout the region. For this reason, the IOD is further classified into two types in this study based on SST anomalies in the western pole. The first type is close to the canonical IOD with negative (positive) SST anomalies in the eastern (central to western) tropical Indian Ocean. The second type, on the other hand, is associated with negative SST anomalies in the eastern and western tropical Indian Ocean and positive SST anomalies in the central tropical Indian Ocean. Based on a composite analysis, it is found that easterly wind anomalies reach the east coast of Africa in the first type, and as a result, positive rainfall anomalies are observed over East Africa. Also, due to the basin-wide easterly wind anomalies, the first type is accompanied by strong sea surface height (SSH) and thermocline depth anomalies. In contrast, zonal wind anomalies converge in the central tropical Indian Ocean in the second type, and no significant precipitation anomalies are found over East Africa. Also, only weak SSH and thermocline depth anomalies are seen during the second type, because equatorial downwelling anomalies induced by westerly wind anomalies in the west are counteracted by equatorial upwelling anomalies caused by easterly wind anomalies in the east. Due to the above difference in oceanic anomalies, the first type is stronger and lasts longer than the second type. ¹ 東京大学大学院理学系研究科 ¹Graduate School of Science, The University of Tokyo (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-10 会場:423 時間:4月28日15:15-15:30 # 2012年に発生した正のインド洋ダイポールモード現象のメカムズム Evolution and mechanism of the positive Indian Ocean Dipole event in 2012 谷崎 知穂 1*; 東塚 知己 1 TANIZAKI, Chiho^{1*}; TOZUKA, Tomoki¹ Evolution and mechanism of a peculiar positive Indian Ocean Dipole (IOD) event that occurred in 2012 are examined. In contrast to the normal IOD event, which starts to develop in late boreal spring, peaks in fall, and decays in winter, the 2012 IOD event was initiated in July, peaked in August, and decayed quickly in fall. Although the normal IOD event is associated with shallower thermocline in the eastern equatorial Indian Ocean, it was deeper than normal in 2012 and this may have delayed the onset of the IOD in this year. For quantitative discussions, mixed layer temperature balance of the eastern pole of the IOD is calculated using outputs from an ocean general circulation model. In agreement with past studies, negative sea surface temperature anomalies in the eastern pole are generated mainly owing to anomalous cooling by the vertical terms (i.e. entrainment and turbulent vertical diffusion) during the normal IOD. However, anomalous cooling by the surface heat flux term played the dominant role in the development of the eastern pole in 2012, and the vertical terms opposed the anomalous cooling. The anomalous cooling by the surface heat flux term is due to stronger cooling by latent heat flux. Also, warming of the surface mixed layer by the climatological shortwave radiation was suppressed owing to deeper mixed layer. ¹ 東京大学大学院理学系研究科 ¹Graduate School of Science, The University of Tokyo (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-11 会場:423 時間:4月28日15:30-15:45 #### バングラデシュ沖海面水温の年々変動 Interannual Variability in SST off Bangladesh 名倉 元樹 1*; 寺尾 徹 2; 橋爪 真弘 3 NAGURA, Motoki^{1*}; TERAO, Toru²; HASHIZUME, Masahiro³ Oceanic variability off Bangladesh is one of the environmental factors which can impact on the local community. For example, Hashizume et al. (2011) pointed out that the number of cholera patients increases in Dhaka, which is populated by 15 million people and the largest city in Bangladesh, when sea surface temperature (SST) off Bangladesh rises. This study examines interannual SST variability in the coastal regions off Bangladesh, which has not attracted much attention in climate sciences so far. We detect a significant interannual SST variability off Bangladesh in two different satellite datasets (NOAA OI SST and TMI SST) and a high-resolution ocean general circulation model driven by a reanalysis dataset. The SST variability is trapped near the coast, amounts to 0.5 to 1.0 degrees Celsius in magnitude, and peaks in the boreal winter. The two observational datasets and the model results show consistency in the spatial and temporal patterns of SST variability, which gives credibility to the detected phenomenon. A statistical analysis shows that SST off Bangladesh tends to be high in the year next to El Nino and in the year of negative Indian Ocean Dipole events, suggesting those climate modes as possible drivers. We are conducting a mixed layer heat budget analysis using the model output, a preliminary result of which shows that a thick barrier layer caused by the freshwater supply from the Ganges plays a role in the generation of the SST variability. Details of the mixed layer heat budget analysis will be reported in the meeting. ¹海洋研究開発機構,2香川大学,3長崎大学 ¹JAMSTEC, ²Kagawa University, ³Nagasaki University (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-12 会場:423 時間:4月28日15:45-16:00 オーストラリア西岸域における降水量の季節予測可能性とその1990年代後半からの劇的な変化について A drastic change in predictability of precipitation off the west coast of Australia after late 1990s 土井 威志 1*; ベヘラ スワディヒン 1; 山形 俊男 1 DOI, Takeshi^{1*}; BEHERA, Swadhin¹; YAMAGATA, Toshio¹ 1独)海洋研究開発機構 アプリケーションラボ Global warming and natural decadal variability after late 1990s strongly warm the coastal ocean off West Australia, which drastically changed climate dynamics there. The warm ocean drives precipitation locally there after the late 1990s, while the local atmospheric variability or the remotely forced atmospheric bridges mainly controlled the local precipitation variability before that. By virtue of that, precipitation predictability off West Australia on a seasonal time scale is also drastically changed after late 1990s; austral summer precipitation off West Australia is significantly predictable 5 months ahead after late 1990s, while there is no predictability of that in 1980s and early 1990s. Although the high prediction skill of precipitation off West Australia is useful for its early warning to extreme events and reducing their damages, the extreme event itself might increase due to global warming and decadal climate variability through a local air-sea feedback. キーワード:季節予測,降水量,ニンガルーニーニョ Keywords: Seasonal prediction, Precipitation, Ningaloo Nino ¹JAMSTEC APL (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-13 会場:423 時間:4月28日16:15-16:35 熱帯太平洋十年規模変動(TPDV)における ENSO 振幅の数十年変調の影響 Interdecadal Amplitude Modulation of ENSO and its Impacts on TPDV 尾形 友道 ^{1*} OGATA, Tomomichi^{1*} 熱帯太平洋における重要な気候変動モードである ENSO は、振幅や伝播特性、周期において数十年スケールでの変動が見られる事が知られており、不安定解析や簡略化した大気海洋結合モデルを用いて平均場の変化に対する ENSO 応答の変化として種々の先行研究がなされた (e.g. Fedorov and Philander 2001, Burgman et al. 2008)。一方、熱帯太平洋における主要な長期変動として、熱帯太平洋十年規模変動(TPDV)が知られている。最近の研究では、CGCM を用いたENSO と TPDV の相互作用についても議論されており (e.g. Rodgers et al. 2004, Choi et al. 2009)、ENSO は平均場である TPDV にも作用する事が指摘されている。しかしながら、TPDV における ENSO 変調の役割について定量的には未だ評価されていない。今回は ENSO 変調と TPDV との関係について GFDL-CM2.1 の長期積分から確認し、OGCM の感度実験を通して TPDV における ENSO の振幅変調の影響について評価した。 キーワード: 大気海洋相互作用, 熱帯海洋, ENSO Keywords: air-sea interaction, tropical ocean, ENSO ¹ 筑波大学生命環境科学研究科 ¹Faculty of Life and Environmental Sciences, University of Tsukuba (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-14 会場:423 時間:4月28日16:35-16:50 ENSO の季節予測における熱帯太平洋 - 熱帯北大西洋間の大気海洋相互作用の重要性 The role of interaction between the Pacific and the north Atlantic Oceans in the prediction of ENSO 山崎 邦子1;今田 由紀子1*;渡部 雅浩1 YAMAZAKI, Kuniko¹; IMADA, Yukiko^{1*}; WATANABE, Masahiro¹ 観測や気候モデルをベースとした研究から、大西洋の海水温偏差と熱帯太平洋のエルニーニョ・南方振動(ENSO)との間に相互作用が存在することが知られている。Ham et al. (2013)では、春先の熱帯北大西洋の海面水温の暖水偏差が、引き続く秋から冬の熱帯太平洋においてラニーニャ傾向をもたらすことを、理想化したモデル実験によって示した。しかし、熱帯太平洋内部でENSO自身の周期を維持する遷移プロセスが存在する状況下で、Ham らが提唱する熱帯北大西洋からの影響がどの程度有意な影響を及ぼすかについては依然として定かではない。 そこで本研究では、熱帯北大西洋の海面水温からの寄与が、過去に実際に起こった代表的な ENSO の遷移プロセスにおいてどの程度影響を与えていたかを定量的に見積もる試みを行った。大気海洋結合大循環モデル(AOGCM)によるアンサンブル事後季節予測システムを用いて、北大西洋の海面水温偏差の影響を遮断した感度実験を実施した結果、過去の代表的な El Nino から La Nina への遷移過程において北大西洋の海面水温偏差が重要な役割を果たしていたことが明らかとなった。 さらに先行するエルニーニョ発達時に熱帯太平洋における海洋から大気へのフィードバックを遮断する追加の感度実験の結果から、北大西洋における海面水温の暖水偏差が成長するには先行するエルニーニョの存在が重要である可能性が示された。 AOGCM を用いた季節予測研究においては ENSO が季節予測可能性の鍵であることから、熱帯太平洋の再現性向上を 主眼においた予測システムの改良が行われてきたが、本研究の結果から、モデルにおける大西洋の大気海洋結合過程の 再現性が季節予測性能を向上させる重要な要因であることが示唆された。 #### 参考文献: Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Nino/Sourthern Oscillation events, Nature Geoscience, 6, 112-116 キーワード: エルニーニョ・南方振動, 熱帯北大西洋大気海洋相互作用, 季節予測, 大気海洋結合大循環モデル Keywords: ENSO, the north tropical Atlantic climate variability, seasonal prediction, atmosphere and ocean general circulation model ¹ 東京大学大気海洋研究所 ¹Atmosphere and Ocean Research Institute, the University of Tokyo (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-15 会場:423 時間:4月28日16:50-17:05 #### ENSO の遷移システムの長期変化 Important factors for long-term change in ENSO transitivity 大庭 雅道 ^{1*} OHBA, Masamichi^{1*} 1 電力中央研究所 ¹CRIEPI エルニーニョ・南方振動(ENSO)には、持続期間に有意な非対称が見られることが知られている。正位相から負位相への遷移は急速に進むのに対し、負位相から正位相への遷移は多くのイベントで停滞する。一方で、この ENSO の非対称性には長期的な変化傾向が見られることが指摘されており、El Nino の遷移性が 1970 年代以降と以降で特に強くなっている (McPhaden and Zhang 2009)。一方で、La Nina の持続性は長期的には強化される傾向ではあるものの、それほど大きな変化がない。本研究では主に正位相時に注目し、i) El Nino の振幅の変化 (Wang 1995; Wallace et al. 1998)、ii) 大気海洋基本場の変化 (Deser et al. 2003; Timmmerman et al. 2003)、iii) 外洋との結合強度の変化 (e.g., Xie et al. 2010) が ENSOの遷移性/持続性に与える影響とその寄与の割合を気候モデルを用いた実験により見積もり、ENSO の遷移プロセスの長期変化の原因を明らかにする。 キーワード: 海面水温, 太平洋, エルニーニョ・南方振動, インド洋 Keywords: Sea surface temperature, Pacific Ocean, El Nino/Southern Oscillation, Indian Ocean (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-16 会場:423 時間:4月28日17:05-17:20 夏季南インド洋におけるマスカリン高気圧の時空間変動とその要因,および海面水 温への影響 Temporal variations of Mascarene High in austral summer and their causes, and influences on the SST field 大石俊1*;杉本周作1;花輪公雄1 OHISHI, Shun^{1*}; SUGIMOTO, Shusaku¹; HANAWA, Kimio¹ Changes in intensity and longitudinal/latitudinal position of Mascarene High (MH) in austral summer (November-January) from 1951 to 2012 are investigated using NCEP-NCAR reanalysis dataset. We define the MH intensity and longitudinal/latitudinal position as sea level pressure (SLP) maximum within a region of [40E-120E, 50S-10S]. The intensity has an interannual variation on a dominant timescale of 3-4 years. The pressure variations associated with the intensity show annular and equivalent barotropic structures throughout the troposphere, which are similar to Southern Annular Mode (SAM). The intensity time series shows a significant correlation with the SAM index. Therefore, it is suggested that the MH intensity variation results from the SAM. The MH longitudinal position also shows an interannual variation on a dominant timescale of 5-6 years and the time series has no significant correlation with the intensity time series. The SLP anomalies associated with the longitudinal variation represent a dipole pattern, whose centers of action are located off the western Australia (WA) and off the south-eastern Madagascar Island (SEMI). The geopotential height anomalies in these regions have different vertical structures; those off the WA are confined from the sea surface to the middle troposphere, while those off the SEMI are distributed throughout the troposphere. In addition, the SLP anomalies averaged within these regions show no significant correlation. It is indicated that the SLP variations off WA are associated with El Nino Southern Oscillation (ENSO). On the other hand, the SLP changes off the SEMI have no relationship with the large-scale atmospheric variations such as SAM and ENSO. The MH intensity variation forms southwest-northeast dipole pattern of sea surface temperature (SST) field, which resembles the Indian Ocean Subtropical Dipole (IOSD) pattern. In addition, the MH longitudinal changes also show the dipole pattern, which is shifted westward by 10 degrees in longitude compared to the SST pattern associated with the intensity variation. The correlations between the MH variations and IOSD index show significant values (0.39 for intensity and -0.57 for longitudinal position). Therefore, it is suggested that both the changes in the intensity and the longitudinal position cause the IOSD. Keywords: Mascarene High, Indian Ocean Subtropical Dipole, El Nino Southern Oscillation, Southern Annular Mode ¹ 東北大学大学院理学研究科地球物理学専攻 ¹Department of Geophysics, Graduate School of Science, Tohoku University (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-17 会場:423 時間:4月28日17:20-17:35 #### 亜熱帯ダイポールの発生における熱帯域の海面水温変動の役割 Role of tropical SST variability in the generation of subtropical dipoles 森岡 優志 1* ; マソン セバスティアン 2 ; テレー パスカル 2 ; プロドム クロエ 2 ; Behera Swadhin 3 ; 升本 順夫 4 MORIOKA, Yushi 1* ; MASSON, Sebastien 2 ; TERRAY, Pascal 2 ; PRODHOMME, Chloe 2 ; BEHERA, Swadhin 3 ; MASUMOTO, Yukio 4 1 (独) 海洋研究開発機構 地球環境変動領域, 2 マリーキュリー大学 LOCEAN-IPSL, 3 (独) 海洋研究開発機構 アプリケーションラボ, 4 東京大学 大学院理学系研究科 ¹JAMSTEC / RIGC, ²LOCEAN-IPSL, Universite Pierre et Marie Curie, ³JAMSTEC / APL, ⁴Graduate School of Science, The University of Tokyo 南半球の亜熱帯域から中緯度における海面水温の経年変動は、周辺国の降水量変動に大きな影響を与えることが知られている。この海面水温変動は、海盆の北東部と南西部に正と負の海面水温偏差を伴い、亜熱帯ダイポールと呼ばれている。本発表では、亜熱帯ダイポールに関するこれまでの研究を紹介し、亜熱帯ダイポールの発生における熱帯域の海面水温変動の役割について、大気海洋結合モデルを用いて実験を行い議論する。熱帯域の各海盆におけるモデルの海面水温を観測の気候値に緩和させた感度実験を行ったところ、亜熱帯ダイポールの発生頻度は、モデルの海面水温を大気と自由に結合させた標準実験に比べ、あまり変化が見られなかった。また、感度実験の亜熱帯ダイポールは、中高緯度の大気の変動現象である南極振動を伴っており、中高緯度を伝播する定常ロスビー波が亜熱帯高気圧を変動させることで、発生していた。これらの結果は、熱帯域の海面水温変動が亜熱帯ダイポールの発生に必ずしも必要不可欠ではないことを示唆している。 キーワード: 大気海洋相互作用 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. ACG37-18 会場:423 時間:4月28日17:35-17:50 #### インド洋亜熱帯ダイポールモード現象の長期変調のメカニズム Mechanism of long-term change in the Indian Ocean subtropical dipole mode 山上 遥航 1*; 東塚 知己 1 YAMAGAMI, Yoko^{1*}; TOZUKA, Tomoki¹ インド洋亜熱帯ダイポールモード現象 (IOSD) は、南インド洋における気候変動現象として知られており、正の IOSD は熱帯インド洋南東部に負の海面水温偏差、南インド洋南西部に正の海面水温偏差を伴う。本研究では、観測データと海洋大循環モデルの結果を用いて、IOSD の長期変調を初めて調べた。その結果、1,2 月の南西極における混合層厚の減少傾向のために、IOSD の発生周期が短くなっていることが明らかになった。IOSD に伴う正(負)の海面水温偏差は、混合層が通常よりも薄く(厚く)、気候値の短波放射による加熱が強められる(抑えられる)ために生じる。近年、混合層が薄いことによって、この効果が増幅され、弱い大気の強制によっても IOSD が励起されている、と考えられる。モニンオブコフ深に基づく診断から、混合層厚の減少傾向は、海面熱フラックスの増加傾向によることが分かった。一方、IOSD の振幅が減少していることも示された。これは、12 月に成長が始まる IOSD が、近年 12 月の混合層が深くなっている傾向により、現象の成長に適さない場が作られているからである。また、1,2 月において混合層が薄くなる傾向にあるため、海面水温偏差を作りやすくする正の効果と共に、海面水温偏差を減衰させる負のフィードバック過程も強化されることによる影響も考えられる。IOSD の長期変調に対応する大気による強制の変化は見られないため、混合層厚の長期変調がIOSD の長期変調において重要であると言える。 ¹ 東京大学大学院理学系研究科地球惑星科学専攻 ¹Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo