(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-01

Room:414

Time:May 1 09:00-09:15

Characteristics and Development Processes of Wetlands on Landslide Masses in Hachimantai Volcanic Group, NE Japan

SASAKI, Natsuki^{1*}; SUGAI, Toshihiko¹

¹the University of Tokyo

Wetlands are widely distributed in the mountainous regions in Japan, and are subject to protection and conservation because of their beautiful landscapes and their peculiar biota. Considering not only their climate and hydrological conditions but also their geomorphological conditions is necessary to characterize development processes and environmental responses of wetlands. In tectonically active and warm humid regions like Japan, landslides are one of the most important factors for mountain development. Recently the role of landslides creating biodiversity and landscape diversity has been much attracted attention in the field of ecology and geomorphology(Geertsema *et al.*, 2007). This study focuses on wetlands as one of the representative landform units composing landslides and presents their characteristics and development processes in Hachimantai volcanic groups which have been deformed by many landslides. 'Wetlands' generally includes various types of water-rich conditions. In this study, as their primary components we focuses on 'bogs' and 'ponds', and define 'bogs' as grasslands in moisture conditions.

Hachimantai volcanic group stands in Ohu backbone range and is composed of some Quaternary complex basaltic or andesitic stratovolcanoes. Their bodies are being collapsed by landslides characterized by a variety of body size and structures: some have deformed into several numbers of sliding blocks. Wetlands occur in almost all large scale landslide bodies. Its climate is categorized in Japan Sea side climate pattern as heavy-snow.

We investigated the characteristics of wetlands using remote sensing images and digital elevation models and analyzed the relationship with landforms by GIS. Then we reconstructed the development process of typical wetlands located both in and out of the landslide masses by the analyses of the sediment including ¹⁴C dating, tephra identification, carbon content measuring and grain size analysis.

On landslide masses 33.2 % (185 of the 599 in total) wetlands stood and area rate was 63.7 %. Most wetlands out of landslides stood on the volcanic original surface along the ridge line of Ohu mountain range or some were in the craters of Hachimantai volcano. The formers are the small bogs formed by meteoric-water (snow) cultivation in the nivation hollows. On the other hand, those on the landslide masses scattered widely. Large landslide masses frequently had ponds cultivated by ground water in the large and deep depressions along the scarps and in the small ones among pressure ridges.

In Oyachi, a wetland in a landslide, black mud and organic sand and silt (representing for bog and forest), sand and gravel (disturbance), clay and silt (pond) and peat (bog) deposited from their bottoms. Wetlands typically develop under the stable circumstance from ponds to bogs, and finally to forests. In the case of Oyachi, at BC 4000-3500 the bog changed to the pond, the former developmental stage, probably because the landslide activity formed the dam, and then it developed to the bog with stabilization of the slopes and the water discharge. On the other hand, the development process of Okuno-maki, a wetland out of landslides, were probably directly affected by climate changes. Diminishing erosion along with decreasing snow accumulation in the nivation hollow and warming of melt season climate toward the Medieval Warm Period enabled to be the bog. In contrast, landslide activities and denudation of landslide masses control the developmental stages of wetlands. Consequently, various ages and types of wetlands are presumed to coexist in humid mountains with large landslide masses.

Reference

Geertsema *et al.* (2007): Influence of landslides on biophysical diversity -A perspective from British Columbia. *Geomorphology* 89, 55-69.

Keywords: wetland, landslide, development process, Hachimantai

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-02

Room:414

Time:May 1 09:15-09:30

Comparison between two chronological methods - in situ TCN and WRT applied to periglacial landforms in Kiso Mountains

ENDO, Ryo^{1*}; SUGAI, Toshihiko¹; EZURE, Yasuhide¹; MATSUZAKI, Hiroyuki¹; MATSUSHI, Yuki²

A lot of types of chronological methods have been suggested in the field of earth science. Chronological methods are classified into absolute dating methods and relative dating methods. Absolute dating methods contain isotopic age or tree-ring chronology for example, and they provide the age as numerical values. Otherwise, relative dating methods are the methods which detect the time series of the formation of geomorphology or deposition. However, they cannot fix the age without the absolute age data (Watanabe, 1990).

Two chronological methods - in situ Terrestrial Cosmogenic Nuclides (TCN) and weathering-rind thickness (WRT) -are subjected. These two methods are especially effective in high mountain areas as it is difficult to find radiocarbon samples or key tephra layers (Aoki, 1994). These two methods were compared using terminal moraines in the cirques (Aoki, 2000). However, this comparison is not made in other mountainous terrains, and it is made in Kiso Mountain Range in this study.

In order to compare these two methods, samples were taken from multiple ridges in the eastern part of Mt Kisokomagatake, and Shirabidaira. Six samples were taken from 3 ridges and 2 depressions of triple ridges, and one sample from Shirabidaira. In order to obtain the exact formation age, we selected the bedrock or the oldest boulder filling the depression and collected their surface layer of 4 cm or less in thickness

Each sample is divided in two, one for TCN and the other for WRT.

10Be exposure dating method is subjected as TCN. The samples are chemically preprocessed and at MALT (Micro Analysis Laboratory, Tandem Accelerator), University of Tokyo. The exposure age is calculated by means of the formula as follows(*) $T=-1/\lambda \ln\{(1-\lambda N/P)\}$ (*)

T: Exposure Age [yr] λ :Decay constant [1/yr] N: Number of isotopes [atoms/g] P: Production rate of isotopes [atoms/(g • yr)]

Weathering-rind is a discolored part of rocks. It is formed due to oxidation or hydration. Though the age is nearly in portion to WRT, its correlation depends on the rock type, sampling point and so on. In this study, samples were cut so that the weathering-rind can be observed as clearly as possible.

In 7 samples, radioactive ages are in either late Pleistocene or Holocene. Weathering-rind was observed and detected for 5 samples. There is a positive correlation between WRT and the exposure age. The primary regression equation is as follows: WRT [mm] = $0.367 \times (\text{Exposure age [kyr]}) + 1.16$. The correlation coefficient is about 0.85. This suggests that in order to get the exposure age of multiple ridges, WRT is also an effective method to a certain extent. Therefore, mean weathering rate (= 0.367 mm/kyr) can be gained by calculating a primary regression line that shows the relationship of the WRT and the exposure age. This weathering rate is the same in the order of magnitude as that (= 0.283 mm/kyr) estimated from Seki and Koizumi (1992).

Keywords: In-situ Terrestrial Cosmic Nuclides, Weathering-rind Thickness, Periglacial landforms, Kiso Mountain Range

¹The University of Tokyo, ²Kyoto University

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-03

Room:414

Time:May 1 09:30-09:45

Tree-line change since the Last Glacial from the pollen profile at the Hiroppara peat bog, central Japan

YOSHIDA, Akihiro^{1*}

To better understand the interaction between the human and environment in past period, this study reconstructed vegetation history and climate change since the late Pleistocene at the Hirropara peat bog (1,400m a.s.l.), central Japan, from the pollen and micro-charcoal profiles at HB-1A cores. Arboreal pollen assemblages and influx of the cores indicated the vegetation history and climate change since the Last Glacial Maximum as follows; 1) ca. 30,000~19,000 cal BP, grassland and wasteland distributed due to decreasing the tree-line; 2) ca. 19,000 cal BP, around the site was covered with a mixed forest of boreal conifers and cool-temperate deciduous, because the tree-line passed the altitude of site; 3) ca. 16,000 cal BP, Betula forest expanded; 4) ca. 12,000 cal BP, a cool temperate deciduous broad-leaved forest consisting of *Quercus* subgen. *Lepidobalanus* and *Carpinus* was distributed; 5) ca. 4,000 cal BP, temperate conifer such as Taxaceae-Cupressaseae, Tsuga, and Abies increased; 6) secondary forest of *Pinus densiflora* and *Larix kaempferi* plantation increased in ca. 500 and 100 cal BP, respectively. It is highly possible that the tree-line change impacted strongly the human activities since the Last Glacial Maximum.

Keywords: pollen analysis, vegetation history, tree-line, obsidian, prehistoric age, central Japan

¹Center for Obsidian and Lithic Studies, Meiji University

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-04

Room:414

Time:May 1 09:45-10:00

Vertical crustal movements along the Japanese coastlines inferred from the Quaternary and recent sea-level changes

OKUNO, Jun'ichi^{1*}; NAKADA, Masao²; ISHII, Masayoshi³; MIURA, Hideki¹

¹NIPR, ²Faculty of Sciences, Kyushu University, ³MRI

Observed relative sea-level (RSL) changes during the past 130 kyr are mainly caused by change of ocean volume, tectonic crustal movement and glacio-hydro isostatic adjustment (GIA) of the Earth in response to the redistribution of ice and water loads. Here we examine the tectonic crustal movements along the Japanese coastlines on three typical timescales (50 yr, 6 kyr and 125 kyr) based on several sea-level observations and their predictions due to GIA process and recent melting of mountain glaciers and both polar ice sheets. We use the observations of RSL based on tide gauge and Holocene RSL observations and the altitudes of marine terraces formed at the last interglacial (LIG) phase at about 125 kyr. The rates on a timescale of 50 yr are derived from tide gauge data, thermosteric sea-level changes due to thermal expansion of the oceans and predictions due to the GIA for the last deglaciation and also recent melting of the mountain glaciers and both polar ice sheets. Those for 6 kyr and 125 kyr are based on the RSL observations and the predictions by GIA modeling, considering uncertainties for temporal changes in eustatic sea-level for the mid- to late-Holocene and LIG phase. The inferred rates for 50 yr are significantly different from those for 125 kyr in most sites, particularly for sites along the coastline from eastern Hokkaido to northeastern Japan, Shikoku and south Kyushu facing the Pacific Ocean. In these regions, the rates for 125 kyr and 50 yr are positive (uplift) and negative (subsidence), respectively. Also, the observed RSL changes at 6 kyr BP are consistent with the inferred RSL changes using the rates for 125 kyr and GIA-predictions in many sites, but inconsistent with those for 50 yr in most sites except for a few sites. These results suggest that the rates on a timescale of 50 yr are not representative of the tectonic crustal movements for timescales longer than 6 kyr in most sites along the Japanese coastlines. The inferred rates on these timescales may be useful in discussing the recurrence of megathrust earthquake with its interval of about 1 kyr like the 2011 off the Pacific coast of Tohoku Earthquake.

Keywords: crustal deformation, sea-level change, Quaternary, tide gauge, thermometric sea-level

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-05

Room:414

Time:May 1 10:00-10:15

Prehistoric human activity around the Hiroppara wetland, central Japan: a case study in and around the obsidian sources

HASHIZUME, Jun^{1*}; SHIMADA, Kazutaka²; SUDA, Yoshimitsu¹; ONO, Akira¹

¹Center for Obsidian and Lithic Studies, Meiji University, ²Meiji University Museum

The Hiroppara wetland is located about 1.5 km to the north of Wada-toge, a well known obsidian source 1,400 m above sea level. Many prehistoric sites and geological obsidian sources are scattered around this area.

Through general surveys and small-scale excavations conducted by the former Wada Board of Education between 1989 and 1991, several prehistoric sites were identified around the wetland. In 2011, the Center for Obsidian and Lithic Studies (COLS), Meiji University began a new research project on this wetland and the prehistoric sites around it. Our research goal is to reveal the relationship between human activities in and around the obsidian sources and paleoenvironmental changes during the late Late Pleistocene (Upper Palaeolithic) to the Early Holocene (Incipient to Early Jomon period). This presentation is a preliminary report of our research, with a particular focus on the results of our archaeological excavations.

On the basis of results of previous surveys and our observations of the topographical features around the wetland, we distinguished the archaeological landscape around the wetland into seven sites, which we numbered from I to VII. The COLS has set up an excavation area 1 (EA-1) at site I and excavation area 2 (EA-2) at site II.

Excavations at EA-1, the Hiroppara I site, and EA-2, the Hiroppara II site, have revealed the following:

1. EA-1

- 1) This site yields evidence of an Early Upper Palaeolithic lithic industry from layer 6 (under the Aira-Tn tephra).
- 2) The latter part of the Late Upper Palaeolithic industry, represented in layers 2b and 3, primarily features bifacial points with a blade core.
 - 3) Incipient to Early Jomon period assemblages are found in layers 2a and 2b.

2. EA-2

- 1) The early part of the Early Upper Palaeolithic industry, from layers 4a and 4b, yields an "obsidian concentration" characterized by a dense lithic concentration in a small area mainly composed of large lithics. Layers 4a and 4b contain the Aira-Tn tephra and a ground-edge stone ax made from tremolite rock.
- 2) The latter part of the Late Upper Palaeolithic industry, from layer 3, appears to be a knife-shaped tool industry using a developed blade technique.
 - 3) Jomon pottery of the early part of the Initial Jomon with pebble concentrations and a pit, arrowheads, and cobble tools.

These new findings expand the scope of information about multilayered prehistoric occupations at the Hiroppara I and II sites. In addition, it has allowed us to extract a significant amount of information on prehistoric human behavior with specific regard to exploitation, transportation and consumption of obsidian during the late Late Pleistocene to the Early Holocene. However, these issues require further study.

Keywords: Obsidian sources, Central Japan, Hiroppara wetland, Hiroppara site group, Jomon period, Upper Palaeolithic

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-06

Room:414

Time:May 1 10:15-10:30

Prehistoric obsidian exploitation in the Central Highlands obsidian sources and excavations of the Hiroppara site group

SHIMADA, Kazutaka^{1*}

The Center for Obsidian and Lithic Studies, Meiji University (COLS) has conducted archaeological and palaeoenvironmental excavations at the Hiroppara wetland and prehistoric site group (sites I and II) located 1,400m of the Kirigamine mountains in Nagawa Town, Nagano Prefecture, Japan. This paper presents a review of the Central Highlands obsidian source area where Hiroppara is located and its circumstances of prehistory, and preliminary results of Hiroppara excavations. Many sites assigned to the Upper Palaeolithic and the Jomon periods have been discovered in and around the Central Highlands. The site distribution of both periods shows distinctive patterns. The Upper Palaeolithic sites concentrate in relatively high-altitudinal zone over 1,000m close to the obsidian sources, while the Jomon sites shows dense-distribution on the hill slopes in low-altitudinal zone below 1,000m. This ebb and flow pattern reflects historical changes between the Upper Palaeolithic and the Jomon periods in the technology of obsidian acquisition, the way of land-use in the source area, the group organization, and the obsidian circulation system. The emergence of an obsidian mining site in the initial Jomon is one of representatives of those changes in the relationship between humans and obsidian. Data for archaeological chronology and changes in palaeoenvironment in the Central Highlands, however, are less accumulated than other areas, resulting in insufficient explanation for changes in human activities in and around obsidian sources. Multidisciplinary research on the Hiroppara wetland and site group provide us with a useful set of data concerning archaeological and palaeoenvironmental changes that represents a limited narrow area. The excavations of Hiroppara by COLS have been conducted three times in 2011, 2012, and 2013. The excavations at sites I and II have unearthed several cultural layers ranging from the Early and Late Upper Palaeolithic to the earliest Jomon. Palaeoenvironmental data during the late MIS 3 and the early Holocene have been obtained from microfossil analyses on the peat cores from the Hiroppara wetland. Though further analyses and integration on obtained data are still required, the Hiroppra wetland and site group will allow us to make an explanatory model for relationships between prehistoric humans and palaeoenvironment in and around obsidian sources of the Central Highlands.

Keywords: the Upper Palaeolithic, the Jomon, the Central Highlands, obsidian sources, the Hiroppara wetland, microfossil analysis

¹Meiji University Museum

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-07

Room:414

Time:May 1 10:30-10:45

Discovery of fresh water diatom from aeolian sediments in the conical pit structure in the Arsanjan area, south Iran

HISADA, Ken-ichiro^{1*}; TSUNEKI, Akira²; CHIBA, Takashi¹

¹Graduate School of Life and Envionmental Sciences, University of Tsukuba, ²Graduate School of Humanities and Social Sciences, University of Tsukuba

It is well known that the life of ancient people was greatly influenced by various natural conditions, such as climate, topography, and geology. In particular, geology is not only important as a source of raw material for stone tools and residence construction material, but also as a provider of groundwater and mineral resources. Furthermore, soil is generated from weathered bedrocks, and soil is a key influence on vegetation. Thus, when ancient people considered the natural conditions for first settlement locations, geology would have been a crucial factor in these conditions. The present paper offers a preliminary examination of interaction of the humankind - Iranian Zagros Mountains.

One of the most important discoveries among the humankind studies was the existence of many Middle Paleolithic and Epi-Paleolithic cave sites in the Arsanjan area, south Iran. One of the caves, named A5-3 (Qar-e Tang Sikan), produced a large amount of Middle to Epi-Paleolithic stone implements. Thus the Arsanjan area is one of the most suitable areas for the study of human evolution and cultural transition from the Middle/Late Paleolithic to the Epi-Paleolithic/Neolithic periods. This means that the investigation of this area can possibly provide opportunity for the better understanding of the evolution of modern Homo sapiens and of the interface of geology-archaeology.

We accomplished the trench survey recently. The results of B3 trench survey (4 X 4 m square) at A5-3 (Qar-e Tang Sikan) are as follows (Hisada and Tsuneki, 2013). The culture layers are divided into ten layers. Layers 1 to 3 correspond with Late Paleolithic to Proto Neolithic. Six samples from layers 2 and 3 indicate approximate 36,000 BP. Layers 4 to 10 are included into Middle Paleolithic culture layers. It is noteworthy that structure 3 was discovered from layer 7. Structure 3 presents a circular from on plan, 1 m in long axis and 0.7 m in short axis. In profile, it is conical and depth is about 50 m. Cave limestone bedrock is used as a bottom wall of the conical shape, and concrete-like harden wall with pebbles and clays is used as the other one. The concrete-like wall might be built after cutting soil surface. The filling of the conical shape structure is light orange color clay, 50 cm in thickness. This clay presents a bimodal pattern, 5 phi and 11 phi in grain size analysis, and consists of quarts, muscovite and hydroxylapatite. The color of the clay is characteristics (10YR7/6, 6/6 etc) and conspicuous from other soil. Based on the color and clay-seized sediments, it can be concluded that they are aeolian sediments. This conical structure may be intended to be a water-reserved place keeping water oozed from the limestone wall (Hisada and Tsuneki, 2013). Thus, the clay might be deposited in this conical pit, 50 cm deep. This laying down at the pit seems to be prevented from erosion and transportation because the pit was full of water. Very recently, it is clarified that clay bed yields diatom, Pinnularia spp.. This genus indicates a living in fresh water (Watanabe et al., 2005). The ages for layer 7 are inferred before 51,000 BP, because layer 5 is dated as 50 ± 2 Ka and the ages for the boundary between layers 6 and 7 are 51 ± 2 Ka based on the photoluminescence measurement (Ito, in pers. comm.).

Keywords: West Asia, Paleolithic ages, Iran, water-reserved place

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-08

Room:414

Time:May 1 11:00-11:15

Quantitative detection of event deposits in the piston core of Beppu Bay, central Kyushu, Japan

YAMADA, Keitaro^{1*}; TAKEMURA, Keiji²; KUWAE, Michinobu³; IKEHARA, Ken⁴; YAMAMOTO, Masanobu⁵

¹Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, ²Beppu Geothermal Research laboratory Institute for Geothermal Science, Kyoto University, ³Center for Marine Environmental Studies, Ehime University, ⁴Institute of Geology and Geoinformation, AIST, ⁵Faculty of Environmental Earth Science, Hokkaido University

Particle transportation and deposition is repeated by various phenomena to be caused by constant cycle of water and atmosphere (non-event) and sudden phenomenon (event) such as earthquake, volcanic eruption, flood, and a stratum is formed. Therefore we can know paleo-disaster or climate change from the stratum. In addition, because the deposit caused by event (event deposits; Shiki, 1998) supplied a lot at a time, it is very important for solving formation process of the stratum. In recent years, due to analysis technique development high resolution/precision study in sedimentology is increasing (Katsuta *et al.*, 2007). For this reason, details of the sedimentation mechanism and the environmental change are more clearly, but on the other hand influence of development on age models and various analyses is actualized. Therefore clear distinction of event and non-event is one of the important problems.

In Beppu Bay, the detailed age model to omit major events was constructed by Kuwae *et al.*(2012). Event deposits were identified by sighting based on facies, CT images, magnetic susceptibility and wet bulk density. This method can identify event deposits seamlessly, but it is a problem to depend on the personal experience and to have difficult to quantitative detection. Therefore we tried quantitative detection of event deposits by the statistical method and compared the detection result and the sighting result in Kuwae *et al.*(2012). The BP09-3 core (about 9.3 m long) using this study which was used in Kuwae *et al.*(2012) was obtained at the deepest place in the head of Beppu Bay.

Generally, because the source and sedimentation process of event deposits are greatly different from non-event deposits, chemical composition, particle composition or other profiles have difference. Therefore, in this study, we defined event deposits as "the sediment which has significantly different composition or physical properties", we tied the quantitative detection of the event sediment using test for outliers. Analysis data are particle composition of very fine sand which sampled every 2 cm from the core, and we used MSD method (Wada, 2010) which is the robust and multivariate method for test. As a result, 47 events were detected. The detected event in this study and the sighing event in Kuwae *et al.*(2012) are relatively congruent, so it is thought that detective method using this study is useful for quantitative detection of event deposits. However, there are problems that 1) one is not to be able to detect minute event sediments enough and 2) the other is difficult to recognize the border of event deposit and non-event deposit. Because the event layer which was not able to detect is thin relative to sampling interval, it is thought that event layer was diluted by non-event deposits. Because there is no a meaningful difference in composition of the neighborhood of border, clear border detection using only test for outliers is difficult. It is necessary to evaluate and reflect event attenuation (vertical change) and preservation potential to solve these problems.

Keywords: Beppu Bay, Event deposits, Quantitative detection, Particle composition

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-P01

Room:Poster

Time:May 1 18:15-19:30

Paleolithic human activity and summer temperature recorded in oxygen isotope of Semisul-cospira from Sakitari-do archeolo

 $FUJITA, Hikaru^1; SONE, Tomomi^1; KANO, Akihiro^{1*}; OKUMURA, Tomoyo^2; FUJITA, Masaki^3; YAMASAKI, Shinji^3; KATAGIRI, Chiaki^3$

¹SCS Kyushu University, ²JAMSTEC, ³Okinawa Pref. Mus. & Art Mus.

Sakitari-do archeological site is located in Gyokusen-do cave system in Nanjyo City, Okinawa Prefecture. Since 2009, this site has yielded important remains including a 12.4-ka-old human canine (Yamasaki et al., 2012). One of the noticeable animal remains is Eriocheir crub. Large and uniform size of the forceps indicates individuals of autumn season when this crub grows into an adult. Paleolithic people may have stayed in this cave during autumn and eaten Eriocheir crub.

In order to examine this hypothesis, this study focuses on Semisulcospira shell that was excavated together with Eriocheir. Semisulcospira is a freshwater gastropod that grows spiral shell. It is known that change in the water temperature was recorded in oxygen isotope of a series of samples collected along the spiral growth axis (Kano et al., 2008). If the Paleolithic people ate the gastropod, the oxygen isotopic value of the outermost sample indicates when it was taken. We analyzed the gastropod shell from two Paleolithic layers (19 ka and 12.4 ka) of the Sakitari-do site, as well as modern Semisulcospira collected a stream 5 km east from the site in late November 2013.

Paleolithic specimens from the Sakitari-do often exhibit a sign-shaped oxygen isotopic curve. Amplitude of the change is ~2 permil that corresponds to ~8 degree temperature change under stable water isotopic composition. More importantly, the outermost value locates on an autumn position in many specimens, which support the hypothesis based on Eriocheir remains. In contrast, the modern Semisulcospira specimens that lack the sign-shaped pattern were young individuals that born in early summer. They recorded temperature change from summer to November. Comparing the summer oxygen values, the modern specimens are 1-1.5 permil lower than the Paleolithic specimens. If the oxygen isotopic value has been constant, it can be evaluated that the Paleolithic summer water was 4-6 degree cooler than the modern summer water.

Kano, A., Suzuki, S., Hori, M. (2008) Information recorded in oxygen isotopic profiles of freshwater gastropod Semisulcospira livertina. Ann. Bull Hiroshima Univ. Taishaku-do site Research Center. 22, 47-61.

Yamasaki, S., Fujita, M., Katagiri, C., Kunikida, D., Matsuura, S., Suwa, G., Oshiro, I. (2012) Excavations (2009?2011) at Sakitari-do cave site, Nanjo city, Okinawa prefecture ?a new Late Pleistocene paleoanthropological site- Anthropological Science (Japanese Series), 120, 121-134.

Keywords: Paleolithic age, oxygen isotope, Okinawa

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-P02

Room:Poster

Time:May 1 18:15-19:30

Environmental changes of prehistoric culture of the Ryukyu, reconstructed by sedimentological studies of Haneji-naikai.

GOTANDA, Katsuya 1* ; YAMADA, Kazuyoshi 2 ; HARAGUCHI, Tsuyoshi 3 ; SETO, Koji 4 ; HAYASHIDA, Akira 5 ; YONENOBU, Hitoshi 6

¹Faculty of Policy Informatics, Chiba University of Commerce, ²School of Human Sciences, Waseda University, ³Department of Geosciences, Graduate School of Science, Osaka City University, ⁴Research Center for Coastal Lagoon Environments, Shimane University, ⁵Department of Environmental Systems Science, Doshisha University, ⁶Graduate School of Education, Naruto University of Education

The beginning of agriculture in Ryukyu Islands goes back to the 10th-12th century (Takamiya and Itoh, 2011). Land clearing for farm lands accelerated soil discharge into water systems in Ryukyu Islands due to heavy rain in summer. In a closed bay, finer-grained clastics can remain sub-merged for long periods, causing adverse effects in fishery.

In this study we will report on the analytical results for sediment cores recovered from Haneji-naikai. Haneji-naikai is a bay closed by the Yagachi and Okubu Islands. Its maximum water depth is 10 m with the area is 10km^2 . The Nasata river flows into the Haneji-naikai. In 2010 and 2012, 3-m and 24-m long sediment cores were recovered from the center of the bay. These were used to reconstruct the past environmental changes and human activities. The latter longer cores consisted of clay and silt with shell fragments from the surface up to the 16-m depth, while he lower part was composed of gravels. The radiocarbon dates of terrestrial plant flagments were 2880+/-40, 4210+/-30 6150+/-40 and 31680+/-220 at the depths of 7.42 m, 10.78 m, 14.84 m and 23.90 m, respectively. The cores were subsampled at an interval of 2.3 cm to analyze carbon, nitrogen and sulfur (CNS) contents, magnetic susceptibility and visible color reflectance. It is considered that the Haneji-naikai was dried up around 30000 yr BP probably due to marine regression. The changes in TOC, TN and TS were recognized from 4m in depth, showing drastic decreased from 4m in depth. This suggests that the deforestation induced by agricultural activities have begun since 1000 yr BP in this region.

Keywords: Haneji-naikai, CNS analysis, Magnetic Susceptibility, Human activity, Ryukyu Islands

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-P03

Room:Poster

Time:May 1 18:15-19:30

Paleoenvironments analysis for the past 50 ka based on TOC and TN of the sediment cores INW2012-1 and -2,Lake Inawashiro

WATANABE, Kei^{1*}; NAGAHASHI, Yoshitaka²; HIROSE, Kotaro³; KUMON, Fujio⁴

¹Graduate School of Science, Shinshu University, ²Faculty of Symbiotic Systems Science, Fukushima University, ³Graduate School of Systems and Technology, Fukushima University, ⁴Department of Environmental Sciences, Faculty of Science, Shinshu University

The total organic carbon (TOC) and total nitrogen (TN) were measured at 2 cm interval for the long sediment cores (INW2012-1, INW2012-2) taken from a central site of 90 m depth in Lake Inawashiro in Fukushima Prefecture. Depth-age relationship has been established based on six 14C data, and the bottom of the drilled core, about 28 m, is estimated as old as 48 ka. Sampleinterval is 50 to100 years.

The compilation of information on lithology, TOC and TN concentrations, C/N ratio and water contents of INW2012-1 and -2 enable us to reveal the paleoenvironments of Lake Inawashiro from the early stage to the present with high temporal resolution. Deep condition of Lake Inawashiro started 42,000 years ago and then the lake has been constantly deep until now. Temporal change of TOC concentration of Lake Inawashiro shows the quasi-periodical fluctuation similar to the marine isotope curve known as LR04, and corresponds well to that of TOC concentration of Lake Nojiri in Nagano Prefecture. Vegetation change revealed at the Yanohara, moor in Fukushima Prefecture corresponds with the TOC fluctuation of TOC in the lake. Therefore, Temporal change of the TOC concentration in Lake Inawashiro seems to be controlled mainly by climate, probably temperature, and can be one of the useful paleoclimate records in the Tohoku region, Japan.

Keywords: Lake Inawashiro, TOC, TN, C/N, paleoenvironments, paleoclimate

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-P04

Room:Poster

Time:May 1 18:15-19:30

Environmental Changes based on the variations of the grain size distributions of MD179 cores, off Joetsu, Sea of Japan

TAKIZAWA, Michiru^{1*}; SUGAI, Toshihiko²; MATSUMOTO, Ryo³

¹Graduate School of Frontier Sciences, University of Tokyo (current PASCO Corporation), ²Graduate School of Frontier Sciences, University of Tokyo, ³Gas Hydrate Research Laboratory, Organization for the strategic Coordination, Meiji University

1.Introduction

Climate change during the Quaternary period experienced a 10,000year?glacial?interglacial cycle. This cycle has an influence on land formation. In Japan, the sea level changes, in coastal areas, and the variations of precipitations, at up stream and middle stream areas, change the riverbeds. Thus the marks from climate changes are expected to be archived around the rivers. However, the long term and continuous records hardly remain on the land, due to weathering and erosion. On the other hand, owing to the more stable environment, the continuous records are expected to remain on the seafloor(Tada et al., 1999). In this study, to reconstruct the correlation between the land formations and climate changes, the variations of the grain size distributions during past 130 ka on the East marginal area of Sea of Japan was revealed.

2.Study Area and Methods

There are a lot of Paleoenvironmental records concerning the Sea of Japan. In this study, 3 cores, which were sampled during the MD179 cruise in the Umitaka Spur and the Unnamed ridge off Joetsu, are used and the variations of grain size distributions of these cores were revealed. The Umitaka Spur is located in the continental slope. Moreover the sedimentation rate off Joetsu is very rapid (Nakamura et al., 2013; Ishihama, et al., in press) and the supply from the island arc is active (Freie et al., 2009). The supply from the Tateyama Mountains has the highest amount in Japan. So the of these supply are speculated to contribute to the sediment off Joetsu.

In this study the age models of these cores are constructed by using tephrochronology, radiocarbon dating, oxygen isotope ratio of foraminifer (Ishihama et al., in press) and additional data from tephra and radiocarbon dating. The organic matters in 485 samples from the 3 cores were removed by 10% H2O2. Then the grain size distributions of these are analyzed by using SALD3000S (Laser diffraction particle size analyzer).

3.Result

The sediments off Joetsu are composed mainly of suspended load. The coarser sediments that contain little fine sand existed during the interglacial age. The variations of the median grain sizes off Joetsu have a similar pattern to the glacial cycles.

In general, it is assumed that the grain sizes of seafloor sediments become smaller as it gets farther from the land. Nevertheless, in this area, the variations in the size of the sediment supplied from land driven by the glacial cycles, have a large influence on the grain sizes of sediments in the study area, because of (1) the active supply from the rivers and (2) the narrow continental shelf.

However, in the case of the rapid rise in sea level, for example after LGM, the formation of alluviums in coastal zone is speculated to have an influence on the size of the sediment in study area.

References

Freire, A. F. M. et al. (2009) Journal of the Sedimentological Society of Japan, 68:117-128.

Ishihama, et al. (in press) Journal of Asian Earth Sciences.

Kashiwaya (1989) Journal of Geography, 98:725-730.

Nakamura, Y. et al. (2013) Journal of the Japanese Association for Petroleum Technology, 78:79-91.

Tada, R. et al. (1999) Paleoceanography, 14:236-247.

Keywords: Seafloor cores on MD179, Umitaka Spur, grain size analysis, Last Interglacial Age

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-P05

Room:Poster

Time:May 1 18:15-19:30

Developing process of the erosional landform and the developmental mechanism of slope failure in Shirasu area

IGARASHI, Ryusuke^{1*}; SUGAI, Toshihiko¹; IMURA, Ryusuke²

¹Graduate School of Frontier Sciences, The University of Tokyo, ²Graduate School of Science and Engineering, Kagoshima University

Pyroclastic flow deposits are distributed throughout Japan, dotting the country's landscape. In Kagoshima Prefecture, in particular, the cliff overlain by "Shirasu" deposits has undergone repeated slope failures during a period of several decades, which is an extremely short timeframe for such activity (Tsukamoto, 1993). Ito pyroclastic flow deposits are part of a huge pyroclastic flow that occurred approximately 29,000 years ago (Machida and Arai, 2003); these deposits span an area of approximately 90 km from Aira Caldera, which was the source of Shirasu deposits (Yokoyama, 2000). Although the stratigraphic relationship between the erosional landform and the Shirasu deposits of volcanic ash and gravel layers is important, little research has been conducted on this topic. Among the current and the former incised valleys engraving Shirasu plateau, an ancient fossil valley has been identified; however, the factors contributing to the ceasing of its growth remain unknown (Yokoyama, 2000). This study examined the relationship between the developmental mechanism of slope failure and the long-term development process of the erosional landform in the Shirasu distribution area to clarify the region's geomorphological evolution. In this presentation, we focus on the Satsuma Peninsula, which includes a part of the Shirasu plateau in northern area. In the peninsula, ancient shallowly incised valleys remain on the plateau, while the current deeply incised valleys have been dissecting the plateau. A landform classification map was made by interpretation of color aerial photograph in 1975 and by analysis of samples obtained from the plateau cliff that developed through erosion-denudation processes such as slope failure and erosion of Shirasu by running water; strength measurements were performed with a Schmidt hammer.

The valley width decreases rapidly from the main stream valley to the tributary valley and in the current incised valley, from downstream to upstream corresponding to the high-density distribution of failures in this site. The failure substance can be easily transported downstream because the "Shirasu" rapidly changes fine sand and silt after the failure. The failure at the valley wall slope has likely been continued by the valley width expansion of the current incised valley. Incision can be estimated from the beginning edge of the downstream side of the original Shirasu located in the place that is near to the East China Sea of the Satsuma Peninsula west, and has progressed in the upstream side gradually. This is probably because that the attitude of the Shirasu deposition surface is low, and the incised valley bottom is close to the base level of erosion, which has been almost stable during the last 7ka.

It is considered that lateral erosion of current incised valleys has continued during the time whereby failure has occurred in the vicinity of the lower end of the incised valley wall. From a long-term perspective, it can be said that the failure potential is high for current incised valleys dominated by width enlargement processes.

Keywords: Shirasu, Slope Failure, Records, Geomorphological Development, Southern Kyushu

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-P06

Room:Poster

Time:May 1 18:15-19:30

Total organic carbon fluctuation from the lake sediments in central Japan during the past 200 ka

KIGOSHI, Tomohiko^{1*}; KUMON, Fujio²; TAWARA, Takaharu³

Lake sediment is a useful recorder of paleoclimate in the mid-latitude regions. However, the life span of a lake is shorter than that of the marine sediments or polar ice sheets in the most cases. Furthermore, a general condition of a lake may be disturbed by an accidental event. Then, we try to combine a climate proxy of total organic carbon (TOC) records from several lake sediments central Japan, and have compiled an average TOC in the past 200 ka which may correspond to the regional climate change.

Used data include Lake Biwa (BIW07-5, 6 core: 0-50 ka, BIW08-B core: 0-200 ka), Lake Nojiri (NJ88+NJ95 core: 0-72 ka), Takano Formation (TKN-2004: 38-160 ka). The time resolutions in those data are between 20-100 years. TOC data of the six sediment cores were normalized as dividing a data by standard deviation. Their fluctuation curves of the normalized TOC were matched by the method of Lisiecki and Lisiecki (2002). Then the matched normalized data were interpolated at 100-year interval by polynomial interpolation method.

The compiled TOC fluctuation in central Japan is well correspond to the D18O curves of the marine sediments (LR04) and the Greenland ice core (NGRIP) respectively both in the orbital and millennial time scales. In late MIS (marine isotope stage) 7 and MIS 1, the compiled TOC values are generally high. In MIS 6, 4 and 2, the TOC values are generally low, and their temporal fluctuation is not so large. The compiled TOC in MIS 5 is characterized by large fluctuation in orbital scale. In contrast, the compiled TOC in MIS 3 shows many peaks which correspond with the repetition of cold stadials and warm interstadials, known as D-O cycle.

This result suggests that the normalized TOC may be a useful proxy of paleoclimate for the past 200 ka, which can be correlated with other sediments or climate records by the many marker tephra beds in central Japan.

Keywords: Total organic carbon, past 200 ka, central Japan

¹Interdisciplinary Graduate School of Science and Technology, Shinshu University, ²Faculty of Science, Shinshu University, ³Wakayama Prefectural Government

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-P07

Room:Poster

Time:May 1 18:15-19:30

Morphosis of the Oyster shell bed and Diatom assemblage in Tokyo bay

NOGUCHI, Marie^{1*}; ENDO, Kunihiko²; KASHIMA, Kaoru¹

Recently, oyster shell beds and reefs have been found in various places in Tokyo bay. Six shell bed types can be recognized on the basis of their lithology (YOKOYAMA et.al., 2004). Topographic and paleogeographic changes closely related to the Holocene Jomon Transgression, have been investigated by reconstructing the migration of oyster shell beds, which are good markers of paleoshorelines, throughout the wide inner bay during the rising stage of sea-level. However, ecology of benthos and diatom assemblages is not clear about oyster shell bed types(Endo et.al.,2013). This study describes taphonomic processes of the oyster reefs well exposed in Tokyo bay, Sanbanze. The oyster reefs of Sanbanze have grown up during about 5 years. The growth of oyster reefs was rapid but nowadays it is reduced due to change of oyster environment as consequences of Torrential rain and Typhoon. We started to do research 5 years ago in Sanbanze. We are making a report on oyster shell bed types and ecology of diatom assemblage in this area.

Keywords: Tokyo bay, oyster shell bed, diatom

¹Kyushu University, ²Nihon University

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

HQR23-P08

Room:Poster

Time:May 1 18:15-19:30

A possibility of influence of deposition in dam-lake to deep marine environments around the Japanese Islands

SHIRAI, Masaaki^{1*}; OMURA, Akiko²; HAYASHIZAKI, Ryo¹; UTSUGAWA, Takako¹

It is well known that dams construction on river caused decrease in sediment supply and serious coastal erosion. While, taking into account similarity of grain size, deposition in dam-lake may also cause decrease in deep marine hemi-pelagic depositional rate. Mass accumulation rate (MAR) during ca. 100 years around the Japanese Islands were estimated with Pb-210 radioactivity concentration.

Core samples were obtained with multiple corer (core length <60 cm) on the R/V Tansei-maru from off the Enshu, Kumano and Niigata regions in the central Japan. Subsamples sliced with 1 or 2 cm thick were dried, crushed and measured by an ORTEC High Purity Ge gamma spectrometer housed in the Department of Geography, Tokyo Metropolitan University with a 48 hour counting. MAR was estimated from Pb-210 radioactivity concentration and dry bulk density of other subsamples measured with the Shimadzu Accupyc 130 gas pycnometer housed in Atmosphere and Ocean Research Institute, the University of Tokyo.

In the off Enshu area, MAR of two core samples obtained from small basin on the outer ridge-Nankai Trough slope (ca. 2500 m water depth) were estimated for this study. Although one core did not show change in MAR, the other core showed decrease in MAR around 1930-1940. In the off Kumano area, MAR of two core samples obtained from bottom of the Kumano Trough (ca. 2100 m water depth) were estimated. Both core showed decrease in MAR around 1940-1960. In the off Niigata area, MAR of a core sample obtained from bottom of submarine canyon on the SE slope to the Mogami Trough (ca. 400 m water depth) was estimated. The core showed decrease in MAR around 1960-1970.

Although estimated ages of decrease in MAR have considerable error, it is remarkable that decrease in MAR was estimated from all the studied areas. Contemporaneity of decrease in MAR and dams construction and similarity of the grain size between hemipelagic sediment and dam sediment suggest that deposition in dam-lake may influence sediment supply to deep marine hemipelagic environment.

Keywords: dam, hemipelagi deposits, mass accumulation rate

¹Tokyo Metropolitan University, ²University of Tokyo