Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved.

STT59-04

Time:April 29 09:45-10:00

Glacier observations by airbourne synthetic aperture radar, PiSAR2, at Tateyama, Japan

FURUYA, Masato^{1*} ; FUKUI, Kotaro² ; SUGIYAMA, Shin³ ; SAWAGAKI, Takanobu⁴

¹Hokkaido University, Graduate School of Science, ²Tateyama Caldera Sabo Museum, ³Institute of Low Temperature Science, ⁴Hokkaido University, Graduate School of Environmental Science

Fukui and Iida (2012) reported that three snowy gorges at Tateyama, Japan, were flowing at a rate of 10-30 cm/month and hence could be identified as glaciers. Fukui and Iida's observations are based on ground-based GPS observations. Because glacier flow velocity data sets are one of the fundamental physical quantities to better understand the dynamics, conventional geodetic techniques have been applied, and the measurement accuracy has significantly improved. However, due to the severe environment and logistic problems, SAR-based velocity mapping has been performed with successful results at large glaciers and ice sheets over the past decades. The velocity mapping technique is so called pixel-offset (or feature) tracking. Thus, applying the same technique to the fore-mentioned newly discovered glaciers, we should also be able to detect the spatial distribution of glacier velocities. However, the presently available satellite-based SAR data set does not have enough spatial resolutions to resolve the velocities. In this regard, the 30-cm resolution of Pi-SAR2 seems promising to perform the pixel-offset tracking. Here we report the first observation images of the Japanese glaciers acquired by Pi-SAR2, and will discuss the preliminary report of velocity mapping.

Keywords: SAR, glacier, Tateyama