Japan Geoscience Union Meeting 2015

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

AAS21-14

会場:201B

時間:5月28日11:15-11:30

シベリアにおける航空機とタワーネットワークを用いたメタン濃度の長期変動解析 Long-term variations of atmospheric methane concentration over Siberia derived from aircraft and tower measurements

笆川 基樹 ^{1*}; 町田 敏暢 ¹; 伊藤 昭彦 ¹; 津田 憲次 ²; Arshinov Mikhail³; Davydov Denis³; Fofonov Alexandrov³; Krasnov Oleg³; Patra Prabir⁴; 石島 健太郎 ⁴ SASAKAWA, Motoki^{1*}; MACHIDA, Toshinobu¹; ITO, Akihiko¹; TSUDA, Noritsugu²; ARSHINOV, Mikhail³; DAVYDOV, Denis³; FOFONOV, Alexandrov³; KRASNOV, Oleg³; PATRA, Prabir⁴; ISHIJIMA, Kentaro⁴

Methane measurements over Siberia are crucial for estimating global CH₄ emissions since Siberia is estimated to contain over 100 million ha of wetlands. We have been acquiring long-term records of atmospheric CH₄ concentration in Siberia at 3 sites (Surgut, Novosibirsk, Yakutsk) using aircraft since 1993 and at a tower network since 2004 (JR-STATION: Japan-Russia Siberian Tall Tower Inland Observation Network, Sasakawa *et al.*, 2010, 2012). Observed CH₄ concentrations at the tower sites in West Siberia showed much higher than those observed at coastal background sites operated by NOAA in northern high latitudinal zone. They also exhibited clear seasonal cycle with double maxima in winter and summer. However increasing trend observed in background sites did not appear in tower data due to high variability in concentration during summer and winter. On the other hand, aircraft data did not have clear seasonal cycle but showed obvious increasing trend. Global stagnation in rise of CH₄ concentration around 2000-2006 was observed in aircraft data over taiga sites (Novosibirsk, Yakutsk) but not clear over wetland site (Surgut). In Surgut, vertical difference of CH₄ concentration in recent years between 1 km and 5.5 km altitude data decreased less than 2/3 of that in early 1990's. This weakening vertical gradient appeared in other altitude data (0.5-4 km) as well. Simulation results with a chemistry-transport model (ACTM; Patra *et al.*, 2009) suggested that transport influence on this trend could be small. A regional emission tagged tracer simulation with the ACTM (Umezawa *et al.*, 2014) indicated that the CH₄ emissions from West Siberia and Europe could produce most extent of the vertical gradient. This finding thus suggested that the sum of dominant emissions decreased in these 20 years.

References

Patra et al., J. Meteorol. Soc. Jpn., 87(4), 635-663, 2009.

Sasakawa et al., Tellus, 62B, 403-416, 2010.

Sasakawa et al., Tellus, 64B, 17514, doi:10.3402/tellusb.v64i0.17514, 2012.

Umezawa et al, Tellus, 66B, 23837, 2014.

キーワード: シベリア, メタン, タワーネットワーク, 航空機観測

Keywords: Siberia, methane, tower network, aircraft observation

 $^{^1}$ 独立行政法人国立環境研究所, 2 一般財団法人地球・人間環境フォーラム, 3 ロシア科学アカデミー大気光学研究所, 4 独立行政法人海洋研究開発機構

¹National Institute for Environmental Studies, ²Global Environmental Forum, ³V.E. Zuev Institute of Atmospheric Optics, Russian Academy of Sciences, ⁴Japan Agency for Marine-Earth Science and Technology