Seasonal variation in total alkalinity in subtropical-subpolar transition area off eastern Japan

*Naohiro Kosugi¹, Daisuke Sasano¹, Masao Ishii¹, Atsushi Kojima², Yusuke Takatani²

¹.Meteorological Research Institute, ².Japan Meteorological Agency

Seasonal variation in total alkalinity has been insufficiently considered in discussing oceanic CO₂ system since it is smaller than that of the partial pressure of CO₂ and dissolved inorganic carbon. Here we compiled hydrographic observations in the western North Pacific off Japan (28–50°N, 140–165°E) for the period of 2011–2015. This dataset we use is sufficient to assess the seasonal variation of TA as it includes the discrete value of TA and related parameters (e.g. temperature, salinity and nutrients) in all months other than January and February.

We excluded the variation of TA being accompanied by the evaporation and precipitation of seawater by normalizing TA to salinity = 35 (nmTA_{35} = TA*35/S). Surface nmTA_{35} showed very little seasonal variation and were 2290–2300 μmol kg⁻¹ in the subtropical region to the south of Kuroshio extension throughout the year. In subpolar region to the north of 46°N, data was seasonally confined in May and June. Surface nmTA_{35} in subpolar region (5–6°C) was 2355–2370 μmol kg⁻¹ and almost equivalent to that in subsurface temperature minimum layer (< 2°C) which corresponds to the remnant of the winter mixed layer. Therefore, the seasonal variation of TA was supposed to be small in the subpolar region. In subtropical-subpolar transition area between these two regions, however, nmTA_{35} showed considerable seasonal variation as large as 80 μmol kg⁻¹. It was lower in summer while higher in winter. This indicated the intrusion subtropical water with low nmTA_{35} to higher latitude in summer.

We compared observed TA in the transition area with estimated TA by multiple linear regressions by Lee et al. [2006]. There were no large discrepancies between estimated TA and observed TA in June and August. However, estimated TA was significantly larger than observed TA by 20–30 μmol kg⁻¹ in March and December. This inconsistency in winter was possibly due to the seasonal bias in the dataset stored in GLODAP database which was applied to make regressions in Lee et al. [2006]. In order to reproduce the seasonal variation in TA subtropical-subpolar transition area properly, it is essential to consider the data in other than summer.

We will also discuss the difference between observed TA and estimated TA from another regression given by Takatani et al. [2014].

Keywords: carbon cycle, ocean acidification
Trends of oxygen with bidecadal oscillations in the Oyashio region and its propagation to the western North Pacific

*Daisuke Sasano¹, Yusuke Takatani², Naohiro Kosugi¹, Takashi Midorikawa¹, Toshiya Nakano², Masao Ishii³

¹.Meteorological Research Institute, ².Japan Meteorological Agency

Over the past decades, secular trends toward decrease in dissolved \(O_2 \) have been observed in a variety of regions and depths in the North Pacific [Keeling et al., 2010, and references therein]. In the western North Pacific, \(O_2 \) decrease has been markedly found around 26.8σ\(\theta \) that corresponds to the core of North Pacific Intermediate Water (NPIW) along the 137°E section [Takatani et al., 2012] and the 165°E section [Sasano et al., 2015]. NPIW is formed in the subsurface of the Kuroshio-Oyashio Interfrontal Zone in the region offshore of northern Japan, and the Oyashio water is considered as one of the source of NPIW. In the Oyashio region, Ono et al. [2001] have found the trends toward increase in AOU and its bidecadal oscillations between 26.7σ\(\theta \) and 27.2σ\(\theta \) using time series data for the period of 1968–1998 in winter. They speculated that the reduction of ventilation caused the decreases in \(O_2 \). However, because the depth of isopycnal horizon of 27.2σ\(\theta \) is much deeper than that of 26.7σ\(\theta \) and does not outcrop in the western North Pacific, it is necessary to improve our understanding of these controlling factors. In this study, the controlling factors of secular trends in dissolved \(O_2 \) in the Oyashio region was investigated based on long-term hydrographic and biogeochemical measurements made over 1954–2014. We also evaluated the bidecadal oscillations in dissolved \(O_2 \) in the Oyashio region. Through the comparison of secular trends and bidecadal oscillations with those along the 165°E section, their propagation from the Oyashio region to the wide range of the western North Pacific was evaluated.

Significant linear trends toward decreasing \(O_2 \) were detected between 26.6σ\(\theta \) and 27.5σ\(\theta \) in the Oyashio region. The contribution of the decrease in the saturation concentration of \(O_2 \) due to warming was small (<10%). The largest decreasing rate in \(O_2 \) was found on 26.7σ\(\theta \) (-0.72 ±0.11 μmol kg\(^{-1}\) yr\(^{-1}\)) while it was attributed to a deepening effect of isopycnal horizons by approximately 33%. Because this density corresponds to temperature minimum layer formed in winter convection in the subarctic zone and surface density in winter has been decreasing, the decreasing \(O_2 \) around 26.7σ\(\theta \) would be predominantly attributed to the reduction of ventilation. At 27.0σ\(\theta \), \(O_2 \) decline would be attributed to that in the Sea of Okhotsk where \(O_2 \) has been decreasing in this density due to the decrease in the formation of dense shelf water (DSW) in association with the decrease in sea ice forming. In deeper layers with densities up to 27.5σ\(\theta \), \(O_2 \) decreases would also be explained by the reduction of DSW that propagates through diapycnal mixing in the Bussol’ Strait. Furthermore, the \(O_2 \) reduction in deep layer might be attributed to the increasing contribution of Western Subarctic water through strengthening of the Aleutian Low. In the Oyashio region, bidecadal oscillations of \(O_2 \) have been observed in 26.6σ\(\theta \)-27.5σ\(\theta \). The periodicities were almost constant at 16.4–19.6 years, and were vertically synchronized within 1 year. Along the 165°E section, the bidecadal oscillations were also found horizontally in 30°N–42.5°N on 26.8σ\(\theta \) with a time lag of 1–3 years from the Oyashio region, and vertically in 40°N up to the subtropical OML at 27.5σ\(\theta \). It suggests that the bidecadal oscillations extended horizontally and vertically to the regions where the subarctic water influences. These results demonstrate that the western subarctic North Pacific is playing an important role as an origin for secular trends and natural variability in dissolved \(O_2 \).

Keywords: deoxygenation, bidecadal oscillation, western North Pacific
Millennial-scale changes in dissolved oxygen due to global warming

*Akitomo Yamamoto¹, Ayako Abe-Ouchi¹, Masahito Shigemitsu², Akira Oka¹, Kunio Takahashi², Rumi Ohgaito², Yasuhiro Yamanaka³

1.Atmosphere and Ocean Research Institute, The University of Tokyo, 2.Japan Agency for Marine-Earth Science and Technology, 3.Graduate School of Environmental Science, Hokkaido University

Global warming is expected to globally decrease ocean oxygen concentrations by sea surface warming and ocean circulation change. Oxygen reduction is expected to persist for a thousand years or more, even after atmospheric carbon dioxide stops rising. However, long-term changes in ocean oxygen and circulation are still unclear. Here we simulate multimillennium changes in ocean circulation and oxygen under doubling and quadrupling of atmospheric carbon dioxide, using GCM (MIROC) and an offline biogeochemical model. In the first 500 years, global oxygen concentration decreases, consistent with previous studies. Thereafter, however, the oxygen concentration in the deep ocean globally recovers and overshoots at the end of the simulations, despite surface oxygen decrease and weaker AMOC. This is because, after the initial cessation, the recovery and overshooting of deep ocean convection in the Weddell Sea enhance ventilation and supply oxygen-rich surface waters to deep ocean. Another contributor to deep ocean oxygenation is seawater warming, which reduces the export production and shifts the organic matter remineralization to the upper water column. Our results indicate that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in deep ocean, which is opposite to the centennial-scale global oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea.

Keywords: Global warming, Dissolved oxygen, Deep ocean circulation, Ocean biogeochemical model

*Glen Snyder, Ryo Matsumoto, Shinsuke Aoki, Adrian Bodenmann, Sangekar Mehul, Blair Thornton, Hitoshi Tomaru, Satoko Owari, Minori Chikada, Robert Brant, Daniel Doolittle, Stefan Williams, Oscar Pizarro

Active methane seeps and shallow methane hydrate deposits are found in along the margins of the Sea of Japan. In this study, we installed several types of methane sensors on an ROV to determine dissolved gas concentrations in the water column as well as to map the distribution of concentrations near the seafloor. We first compare the performance of sensors from different manufacturers, then compare the results to actual water samples collected in vacuum bottles and in Niskin bottles. The recorded sensor data is then calibrated and compared with seafloor features recorded using the SeaXerocks mapping system developed at the University of Tokyo. The results show that high methane concentrations near the seafloor correspond to observed areas of microbial mats and exposed gas hydrate. The authors wish to acknowledge the crew and scientific staff of JAMSTEC that provided technical support during the 2014-2015 research seasons. This study was conducted as a part of the 2013-2015 shallow methane hydrate exploration project of the Ministry of Economy, Trade and Industry.

Keywords: methane hydrate, ROV, methane sensor
Diffusive benthic nutrient flux in the central of East China Sea

*Qian Liu*¹ ², JING ZHANG¹, Kai Jiang¹, Shota Kambayashi¹

¹.University of Toyama, Toyama, Japan, ².Northwest Pacific Region Environmental Cooperation Center, Toyama, Japan

To evaluate the importance of nutrient supply from sediment, phosphate, silicate, nitrate and nitrite in the porewater, overlying water, and entire water column were measured in the central of East China Sea. A measurement of multi-size particulate characterizing contour (LIIST) was carried out together with CTD casts also to quantify the influence of suspended particle. All nutrient concentrations in the porewater were greater than overlying water at stations B1 (32.9N, 126.0E) and C1 (32.7N, 124.8E), suggesting sediment was one of nutrient sources to the water column. Nutrient diffusion fluxes were calculated from the corresponding concentration gradients at these two stations, accounting for 20–60% of primary productivity. In contrast, at station C4 (31.2N, 126.0E), sediment was a nutrient sink. Bottom water at station C4 had low dissolved oxygen (DO, 1.8 ml/l), high weighted nutrients, and finest suspended particle relative to stations B1 and C1. Thereby, opposite nutrient diffusion at station C4 is most likely caused by organic matter remineralization at bottom water. However, phosphate concentrations at the bottom seawater were greater than the overlying water at all three stations. It might be affected by lateral transport near bottom or phosphate was absorbed by high concentration of particles at the seafloor. This study infers that nutrient flux from sediment to the overlying water, and further diffusion to the water column depends on the sediment property (e.g. grain size), in situ biogeochemical process and may associated with water transport.

Keywords: Porewater, Nutrient, Benthic flux, East China Sea

*JING ZHANG¹, Qian Liu¹,², Takeshi Matsuno³

1.University of Toyama, 2.Northwest Pacific Region Environmental Cooperation Center, 3.Kyushu University

To understand the origins and mixing of complicated water masses, as well as the contributions and nutrient supply via these various water masses in the East China Sea (ECS), a research cruise was conducted in the summer 2004. Water mass sources are defined by multiple tracers, including salinity and Rare Earth Elements (REE), etc. These sources include mixed shelf water (MSW, highest heavy REE concentration), Kuroshio surface water (KSW, highest temperature), Kuroshio tropical water (KTW, highest salinity), and Kuroshio intermediate water (KIW, highest nutrient content). High-nutrient water was identified in the middle shelf (bottom 100-130 m) and considered a mixture of MSW, KTW and KIW. The mixing ratios of three water sources are calculated using both conventional tracers (salinity and potential temperature) and four HREEs with the least squares method. Comparable results were obtained using these two datasets, suggesting HREEs, like temperature and salinity, are conservative comparing with water mass residence time and act as useful tracers to characterize the various water masses. The estimated KIW accounts for 26–55% of the middle shelf bottom water in the northernmost research area, while the proportion of NO₃+NO₂ from KIW is 55–81% and that of phosphate is 58–90%. This indicates that KIW is the major nutrient source in the bottom water of the middle ECS shelf.

Keywords: water mass analysis, rare earth elements, East China Sea
Risk of heavy metal and arsenic contaminations and its effect on marine phytoplankton during seafloor mining

Shigeshi Fuchida, Hiroshi Koshikawa, Shun Tsuboi, Naoki Furuichi, Hiroyuki Yamamoto, Masanobu Kawachi

1. National Institute for Environmental Studies, 2. Japan Agency for Marine-Earth Science and Technology

[Introduction]
Hydrothermal ore deposits are important as a metallic mineral sources. Many sulfide deposits containing Cu, As, Ag, Pb and Zn were found in the Exclusive Economic Zone of Japan. Recently, development of seafloor mining technology is advanced to use commercially those minerals. Environmental impact assessment is required because the seafloor mining could lead to marine environmental problems. For example, heavy metals and arsenic might be released from waste ore minerals during transfer of those from seafloor to vessel.

Here, we discuss about the possibility of heavy metal and arsenic contaminations and its effect on the primary production of marine phytoplankton during seafloor mining.

[Experimental]
Five types of chimney samples (G03, G04, G05, G06, and R04) which collected from hydrothermal fields of Iheya North Knoll and Izena Hole during the NT11-15 (Aug. 2011, R/V Natsushima) and NT12-06 (Mar. 2016) cruises with provided from JAMSSTEC. In the laboratory, the chimneys were powdered manually and sieved with a 1/16 mm mesh. Approximately 3.0 g of the powdered chimney was stirred into 30 mL of ultrapure water or artificial seawater (Daigo SP) in a Teflon centrifuge tube (50 cm³), and then the tube was shaken at room temperature for 6 h. The solid phase was separated by centrifugation and filtration (0.2 μm). The metals dissolving in the solution were quantified by ICP-AES and ICP-MS.

Marine phytoplankton was incubated to evaluate the toxicity of the metals released from the chimney to the phytoplankton. Seawater was collected from subsurface chlorophyll maximum layer at hydrothermal fields of Iheya North Knoll and Bayonnaise Knoll during the KR15-17 (Nov. 2015, R/V Kairei) and KR15-20 (Dec. 2015), respectively. The solution reacted with the chimney G06 was added to the seawater and incubated for 18 h on the board. The chlorophyll fluorescence (F0) of the sample solution was determined by a pulse amplitude modulated (PAM) fluorometer.

[Results and Discussion]
Heavy metals such as Zn, Pb, Mn, Cd, and Cu and As were released from the chimney into the solution after the shaking with ultrapure water. The concentrations of Zn dissolving in the solution were between 41.7–1026.0 ppm. Arsenic (43.1 ppm) was the most abundant in the solution reacted with the chimney G05. Copper (61.6 ppm) was highly released from the chimney G06, whereas it was undetected from the other samples. The compositions of metals dissolving in the solutions were different from those of the chimneys. When the chimney was reacted with artificial seawater, the concentrations of heavy metals and arsenic dissolving in the solution were similar to ultrapure water. These results suggest that heavy metals and arsenic could be released from ore minerals to ocean during seafloor mining.

The chlorophyll fluorescence of seawater gradually decreased with time without addition of the solution reacted with the chimney G06. Marine phytoplankton living in the seawater collected from the subsurface chlorophyll maximum layers would be unvigorously. When the solution reacted with the chimney G06 was added to the seawater (0.2 %), the chlorophyll fluorescence rapidly decreased with time. Therefore, the primary production of marine phytoplankton would be limited by heavy metals.
and arsenic released from ore minerals.

Keywords: seafloor mining, marine phytoplankton, heavy metal contamination
Numerical simulation of the winter red tide of *Eucampia zodiacus* in the Harima-Nada

*masami abe¹, Kyoko Hata¹, Wataru Nishijima²

1.IDEA Consultants, Inc., 2.Hiroshima Univ.

A coastal region is closely linked human society, and it is very influenced by anthropogenic effects.
Especially, oligotrophic waters became a problem last few decade in Harima-Nada.
The oligotrophic waters in Harima-Nada is considered that related to changes of species composition of phytoplankton.
Here, the bloom of *Eucampia zodiacus* and distribution of DIN in Harima-Nada were calculated by used of the numerical simulation model.

Keywords: ecosystem model, diatom, Eucampia, red tide, Harima-Nada
Phytoplankton Community Structure and Zooplankton Abundance around The Kuroshio Western Boundary Current

*Takafumi Hirata¹, Koji Suzuki¹, Hiroomi Miyamoto²

1.Faculty of Environmental Earth Science, Hokkaido University, 2.Tohoku National Fisheries Research Institute

The Kuroshio is one of the largest western boundary currents in the world. In spite of the recognition of its importance on coastal fisheries in the Kuroshio waters, ecological mechanisms supporting fisheries production are poorly known. Recent marine ecosystem models made significant advancement in representing interactions among physical, biogeochemical and biological processes, yet interactions among different organisms within the biological processes is not necessarily well represented, mainly due to a lack of sufficient observation data required for modeling. Here we extended in situ observation of multiple phytoplankton groups into satellite observation and investigated their interactions with zooplankton such as copepods, using Artificial Neural Network. We found that phytoplankton (especially diatoms) played an important role in explaining zooplankton variability but only so in summer time in some waters. In winter-time, however, zooplankton abundance was rather independent of phytoplankton (chlorophyll) biomass (regardless of phytoplankton groups) and was largely explained by environmental factors such as a velocity of the Kuroshio. These results did not contradict the dilution-recoupling hypothesis, although a further investigation remains necessary to support the hypothesis.

Keywords: Phytoplankton , Zooplankton, Kuroshio
Geography of biogenic elements in the super oligotrophic subtropical Pacific Ocean: What form is most important?

*Hiroaki Saito¹, Fuminori Hashihama², Makoto Ehama², Takuhei Shiozaki³

¹Atmosphere and Ocean Research Institute, the University of Tokyo, ²Tokyo University of Marine Science and Technology , ³Japan Agency for Marine-Earth Science and Technology

Supply and dynamics of biogenic elements such as N, P, Si are essential marine processes to consider ocean domain since they are main control factors of biological productivity, ecosystem structure and biological pump. In marine ecosystems, most nutrients are supplied from deep water and the biological productivity is high in subarctic and upwelling regions. On the other hand, most part of subtropical waters are recognized as oligotrophic ecosystem with lower nutrient concentration than “detection limit” of conventional method of the analysis, e.g., <100 nM for NO₃⁻. In the oligotrophic subtropical waters, it has been suggested DOM contribute significant part of the supply of N and P supply and production, but the contribution of particulate matter is rarely studies. Recently, high-sensitive methods for nutrient measurement was developed (e.g., Hashihama et al., 2009) and found that the variations in nitrate and phosphate concentration were more than 3-order of magnitude in the western subtropical North Pacific. We developed the method of LWCC (Liquid Waveguide Capillary Cell) for nutrients into particulate forms of P and Si and also for DOP, and compared the inventory of each form in the Pacific Ocean. We found that variations in the concentrations of particulate N and P were within 2-order of magnitude and less variable than nutrients (5-order of magnitude). Our study suggests that particulate forms of P and N, including zooplankton, play important role as a source of biogenic elements in super-oligotrophic western subtropical gyre of the North Pacific. We will discuss contrastive biogenic elemental dynamics between subtropical and subarctic/upwelling ecosystems.

Keywords: subtropical North Pacific, biogenic elements, plankton
Optimality based models of phytoplankton size structure in the North Pacific

*Bingzhang Chen¹, Sherwood Lan Smith¹

1. Japan Agency for Marine-Earth Science and Technology

Phytoplankton size structure is an important factor determining trophic transfer and export production in the ocean. To model phytoplankton size structure, conventional ocean models usually discretize the phytoplankton community into a number of size classes, which is usually computing extensive. In addition, the flexible behaviors of phytoplankton physiology such as flexible intracellular nitrogen-to-carbon ratios and chlorophyll-to-carbon ratios should also be considered. Here we present a new ecosystem model which combines the flexible behavior of phytoplankton physiology and an innovative approach of modeling the mean and variance of a continuously distributed phytoplankton size. The key features of the new type of ecosystem model include: 1) A tradeoff exists phytoplankton photosynthesis and nitrogen uptake. Phytoplankton cells are assumed to optimize the energy allocation between light harvesting and nitrogen uptake. 2) By assuming a continuous lognormal distribution of phytoplankton size, key phytoplankton physiological parameters such as nutrient uptake rate, photosynthesis rate, minimal nutrient quota, etc. follow validated size-scaling laws. Then the net growth rate of the bulk phytoplankton community can be expressed as a function of the net growth rate at mean log size and the second derivative of net growth rate evaluated at the mean log size based on moment closure approximations. 3) A killing-the-winner strategy is adopted to maintain phytoplankton size diversity. This model is coupled with a 3D regional ocean circulation model (ROMS) in the North Pacific and can reproduce the large-scale patterns of oceanic circulation, temperature, and salinity, nitrate and chlorophyll fields. As expected, nutrient concentration is the major factor controlling distributions of phytoplankton mean size and size variance. Sensitivity analysis suggests that the ecosystem model is very sensitive to the type of grazing functions and zooplankton mortality closure terms.

Keywords: Phytoplankton, Size, Modeling
Internannual Variability of Summer Phytoplankton Community in the East China Sea

*Joji Ishizaka¹, Qian Xu², Chiho Sukigara³, Takeshi Matsuno³, Sinjae Yoo⁴

1.Institute for Space-Earth Environmental Research, Nagoya University, 2.Graduate School of Environmental Studies, Nagoya University, 3.Research Institute for Applied Mechanics, Kyushu University, 4.Korea Institute of Ocean Science and Technology

Interannual variability of summer phytoplankton community was examined with HPLC pigments in 2009, 2010, 2011 and 2013. On 2009 and 2013, diatom was dominated in high chlorophyll-a water, while on 2010 and 2011 smaller phytoplankton was dominated. It is expected that influence of high nitrate Changjiang river water was stronger on 2010 and 2011, while phosphate amount was higher in 2009 and 2013 and coastal upelling may stronger. The source of nutrients may be the cause of the dominance of different phytoplankton groups.

Keywords: phytoplankton, river water, nutrients
Data assimilated state variables of a lower trophic level marine ecosystem model (3-D NSI-MEM) by a micro-genetic algorithm in North Pacific

*Yasuhiro Hoshiba\(^1\), Takafumi Hirata\(^2\), Masahito Shigemitsu\(^3\), Hideyuki Nakano\(^4\), Taketo Hashioka\(^3\), Yoshio Masuda\(^2\), Yasuhiro Yamanaka\(^3\)

1. Atmosphere and Ocean Research Institute Center for Climate System Research, University of Tokyo,
2. Faculty of Environmental Earth Science, Hokkaido Univ., 3. JAMSTEC, 4. MRI

Lower trophic level marine ecosystem models have become increasingly important for understanding marine ecological systems, but there are two main difficulties for improving simulation results of marine ecosystem models. Firstly, lower trophic level ecosystem models have recently had many parameters with state variables increasing. The difficulty of estimating adequate parameters have also increased. Unbalanced parameter sets often lead to numerical divergence. Secondly, it is difficult for ecosystem models with one kind of ecological parameter set to reproduce realistic situations (e.g., distribution patterns of phytoplankton, timing of spring phytoplankton bloom and so on), especially when coupled to physical three-dimensional models. Because the characteristics of local species are different with various provinces in the ocean. To estimate optimal parameter sets and approximate model results to a realistic situation, we used data assimilative approach by a genetic algorithm with a three-dimensional lower trophic level marine ecosystem model.

The marine ecosystem model ‘NSI-MEM’ based on NEMURO has been developed in Japanese communities. The ecosystem model has 14 compartments including two phytoplankton functional groups (non-diatom small phytoplankton (PS) and diatoms (PL)). The model was extended three-dimensionally and worked offline with the environmental physical field obtained from another realistic physical 3-D model (MRI.COM) experiment. One of the focuses of this study is to approximate the PS and PL concentrations to the values estimated from satellite data in the North Pacific region in 1998. We divided the region (15\(^\circ\)N, 120\(^\circ\)E to 160\(^\circ\)E) into three provinces based on dominant species and nutrients limitation, and set different ecosystem parameters for each province. The optimal parameters were estimated by the similar method to that in Shigemitsu et al. (2012) that used one-dimensional NSI-MEM with a micro genetic algorithm.

The correlation of phytoplankton concentration between the model result and satellite data is totally larger than that in the result without the estimated optimal parameters. For seasonal analysis in 1998, the correlation becomes relatively larger especially in winter (January to March) and smaller in spring (April to May), compared to that without the parameter estimation. This is because the timing of phytoplankton spring bloom in the model domain is shifted to the early period, due to the data assimilation process. As a result, roughly speaking, the satellite data-based assimilation by the genetic algorithm can help the model results to improve. For future works, we should investigate the values of the estimated ecosystem parameters (i.e., the consistency between the ecosystem parameters and the real ecology of phytoplankton).

Keywords: 3-D lower trophic level marine ecosystem model, Data assimilation by a micro-genetic algorithm, North Pacific
Environmental history of living marine resources and fluctuation of fisheries resources

*Shin-ichi Ito¹, Takaaki Yokoi¹, Tomihiko Higuchi¹, Yasuhiro Kamimura², Motomitsu Takahashi², Tetsuichiro Funamoto², Osamu Shida³, Kotaro Shirai¹, Kosei Komatsu¹

1. Atmosphere and Ocean Research Institute, The University of Tokyo, 2. Fisheries Research Agency, 3. Hokkaido Research Organization

While about 20-year periodic fluctuation of seawater nutrient and oxygen concentrations synchronous with 18.6-year nodal tide have been observed in the subarctic and subtropical oceans in the North Pacific, fisheries resources around Japan showed 20-year and about three times 50-70 years (sardine, common mackerel, jack mackerel, etc.) fluctuations. There is a possibility that the 18.6-year nodal tide effects on the fisheries resources fluctuations through climate, water mass formation, and prey plankton productions. For comprehensive understandings and high skill predictability of long-term fluctuations of nutrient cycles, marine ecosystems, and fisheries resources, it is important to elucidate the mechanisms of phenomena connected to 18.6-year nodal tide. In 2015, a new project entitled “Ocean mixing processes (OMIX), impact on biogeochemistry, climate and ecosystem” started. As a planning research “Environmental history of living marine resources and fluctuation of fisheries resources” was formed. In this presentation, we will introduce the study plan. We aim to elucidate direct and indirect influences of the long-term fluctuation of ocean mixing processes caused by 18.6-year nodal tide on fisheries resources by high resolution isotope analysis of fish juvenile otoliths and marine ecosystem-fish coupled models.

Keywords: ocean mixing, long term fluctuation, ecosystem model, fish growth-migration model
A challenge to evaluate effect of climate change on Japanese anchovy (*Engraulis japonicus*) in the East China Sea II

Shin-ichi Ito¹, Kosei Komatsu¹, Satoshi Kitajima¹, Akinori Takasuka², Naoki Yoshie³, Takeshi Okunishi², Motomitsu Takahashi², Toru Hasegawa², Takashi Setou², Micho Yoneda²

¹.Atmosphere and Ocean Research Institute, The University of Tokyo, ².Fisheries Research Agency, ³.Ehime University

We have evaluated climate change (global warming) effects on Japanese anchovy in the East China Sea by integrating a fish-migration and growth model using environmental conditions derived from simulations of a coupled ocean circulation and ecosystem model with current and future climate forcing. For the ocean circulation model, CHOPE (Max-Planck-Institute Ocean Model) was used. For the marine ecosystem model, eNEMURO, an extended version of NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography) was used.

The initial spawning grounds were assumed in the area which depth is less than 1000 m and the sea surface temperature (SST) is between 15.6 and 27.8 degC in the previous study. However, a new analysis of water temperature of egg distribution showed higher probability in the region which SST is between 14.1 and 20.1 degC and 27.2 and 27.8 degC. The spawning area was estimated using the new temperature criteria and the fish growth and migration model was integrated for one year since the spawning. In addition, although the spawning timing was assumed in March in the previous study, we conducted the simulations for anchovy spawned in April and May and investigated the dependency on the spawning timing.

Under the contemporary condition, the number of anchovy larvae advected to the northwestern side of Kyushu (NWK) showed the maximum in April, while it showed the maximum in March in the southwestern side of Kyushu (SWK). However, under the future climate, it showed the maximum in March both in the NWK and SWK. Therefore, the peak timing was advanced in the NWK under the future condition. Regarding the body size, larvae advected to the NWK showed the maximum mode body length in May, while those advected to the SWK showed it in April under the contemporary condition. Under the future condition, the timing was advanced by one month (April in the NWK and March in the SWK). Under the future condition, the number of larvae advected to the SWK in April and May and those advected to the NWK in May were drastically decreased. This result heavily depends on the assumption that the spawning ground is not formed in the region which SST is between 20.2 and 27.1 degC. Under the future condition, the spawning ground was disappeared in the East China Sea. As a future work, the reason the spawning probability becomes lower in the region which SST is between 20.2 and 27.1 degC should be elucidated.

Keywords: ecosystem model, fish growth-migration model, Japanese anchovy, climate change