Akatsuki returns to Venus

Masato Nakamura

1.Institute of Space and Astronautical Science of Japan Aerospace Exploration Agency

ISAS successfully launched Akatsuki at 06:58:22 JST on May 21st, 2010, by H-IIA F17. After a half year successful cruise from the earth to Venus, the malfunction happened on the propulsion system during the Venus orbit insertion (VOI) on December 7th, 2010. The engine shut down at 158 sec during the VOI, while we planned 12 min operation. The spacecraft did not enter the Venus orbit but entered an orbit around the Sun with a period of 203 days. The orbital maneuvering engine (OME) was found to be broken and unusable, but most of the fuel still remained. ISAS's engineers decide to use the reaction control system (RSC) for orbital maneuver and three minor maneuvers in November 2011 were successfully done so that Akatsuki would meet Venus in 2015.

The Akatsuki spacecraft was rotating about the sun with a period of 199 days and was on the trajectory to meet Venus on 22nd of November, 2015 after the orbital maneuvers in November 2011. The date, November 22nd, 2015, was chosen as the shortest encounter timing with consideration of spacecraft's lifetime. Trajectory analysis done later revealed that the orbit around Venus after insertion on 22nd of November, 2015 is unstable. We decided to perform another orbital maneuver in July 2015 to let the spacecraft to meet Venus on 7th of December, 2015 with this date the orbit around Venus would be more stable.

On 7th of December, 2015, the spacecraft approached from outside of Venus orbit and captured by Venus. For the Venus orbit insertion in 2015, termed VOI-R1, four 23 Newton-class thrusters were used as opposed to 500 Newton-class OME used at the 1st VOI in 2010. VOI-R1 burn (1228 seconds) was successfully achieved from 23:51:29 on 6th of December through 00:11:57 on 7th of December (UTC, on-board time).

Akatsuki became the first satellite of a planet in Japan. After VOI-R1, the apoapsis altitude is 0.44 million km with the inclination of 3 degrees. The orbital period is 13 days and 14 hours. The figure shows the VOI-R1 geometry depicted with the Venus center coordinate. For two purposes, to decrease the apoapsis altitude and to avoid long eclipse during the orbiter, we performed a trim maneuver at the first periapsis. The apoapsis altitude is now 0.36 million km with periapsis altitude of 1,000 km - 8,000 km (varying) and the period is 10 days and 12 hours.

Akatsuki will send data over two years to us, and it means that our exploration enters the new era when Japan deliver the continuously changing planet's data to the whole world.

Keywords: Akatsuki, Venus, Exploration
VOI-R1 Geometry (Venus center)

- Attitude change (+Z sun to VOI-R1)

- Apoapsis Altitude 0.31 – 0.34 million km (after April 2016)

- Umbra (23:51 – 00:12)

- 14 days later

- Venus observation

- Venus velocity

- Earth

- Sun
Initial Results and Radiometric Properties of Ultraviolet Imager on AKATSUKI

*Manabu Yamada¹, Atsushi Yamazaki², Takeshi Imamura², Shigeto Watanabe³

1.Planetary Exploration Research Center, Chiba Institute of Technology, 2.Institute of Space and Astronautical Science / Japan Aerospace Exploration Agency, 3.Hokkaido Information University

Introduction:
The beautiful UV images of the Venusian cloud top were previously performed by several spacecraft such as Mariner 10 [Bruce et al., 1974], Pioneer Venus [Travis et al., 1979; Rossow et al., 1980], Galileo [Belton et al., 1991], Venus Express [Markiewicz et al., 2007a, 2007b; Titov et al., 2008]. These previous instruments have taken images at the wavelength around 365-nm, but what material distribution reflects the contrasting density has been unknown yet. Under wavelength of 320nm, SO₂ absorption consistent with Pioneer Venus measurements [Pollack et al., 1979], and images in this wavelength can clarify the distribution of SO₂.

The ultraviolet imager (UVI) on the AKATUSKI satellite takes ultraviolet images of the solar radiation scattered at the Venusian cloud top level at the both 283- and 365-nm wavelengths. There are absorption bands of SO₂ and unknown absorber in these wave-length regions. UVI result into measurements of the SO₂ and the unknown absorber distributions, and the sequential images lead to understand the velocity vector of the wind at the cloud top altitude.

First Image of Venus:
UVI has taken the two UV wavelength images of Venus immediately after the operation of the Venus orbit insertion last year. The first memorial images by the AKATUSKI “satellite” of Venus were taken at the positions of ~72,000 km far from the Venus center. The solar phase angle at the sub-observer point was ~45 degrees with the evening terminator. The UVI image at a wavelength of 283 nm presents solar radiation attenuated by SO₂ absorption near the cloud top altitudes. This is the first time to capture the snapshot of Venus with this wavelength. Together with the 365-nm images, the continuous UVI images will be used to derive horizontal cloud-tracked velocities near the cloud top altitudes (62-70 km) [e.g., Ogohara et al., 2012; Kouyama et al., 2013]. Although UVI had experienced under interplanetary radiation environment for an unexpected long time, the performance of UVI is fortunately very high because CCD is strongly shielded. Estimated radiance from the first image is from 50 to 200 W/m²/sr/μm. It is very reasonable for brightness of the Venusian cloud top. The image quality is very comfortable suite to study scientific objectives before launch. We expect the interesting results from the UVI images of Venus.

Keywords: Venus, AKATSUKI, Ultraviolet Imager
INITIAL RESULTS OF THE VENUSIAN CLOUD-TOP TEMPERATURE OBSERVATION BY AKATSUKI/LIR

*Makoto Taguchi1, Tetsuya Fukuhara2, Takeshi Imamura3, Masato Nakamura3, Makoto Suzuki3, Takao M. Sato3, Toru Kouyama4, Naomoto Iwagami5, George HASHIMOTO6, Mitsuteru Sato7, Seiko Takagi8, Munetaka UENO9

1.Rikkyo University, 2.NICT, 3.ISAS, 4.AIST, 5.University of Tokyo, 6.Okayama University, 7.Hokkaido University, 8.Tokai University, 9.Kobe University

The Longwave Infrared Camera (LIR) onboard Akatsuki took Venus images just after the first challenge in Venus orbit insertion (VOI) in December 20101). They showed several interesting features in the brightness temperature distribution at the cloud top, however, quality and quantity of the data were far insufficient for studies in details. Akatsuki was finally thrown into a Venus orbit at the second attempt at VOI (VOI-R1) in December 2015 after the unwilling five year cruise around the Sun. It had been confirmed before VOI-R1 that LIR as well as the other cameras onboard Akatsuki was still very good in health. Observations of Venus were started immediately after the VOI-R1 operation. More than 20 Venus images in thermal infrared have been acquired by LIR so far, and observations are continuing to accumulate Venus images day by day.

This presentation will introduce initial results of observation of Venus by LIR, and also show a perspective in future studies in the atmospheric dynamics using brightness temperature and wind distributions derived from the LIR data.

LIR is a small light-weighted thermal infrared camera using an uncooled micro-bolometer array with 320 x 240 effective pixels as an image sensor, and acquires a snapshot of thermal radiation emitted from the cloud top of Venus in the wavelength region of 8 to 12 µm2). The FOV of LIR is designed to fit the full Venus disk to it from the distance of 4.8 R_V from the center of Venus. Since Akatsuki is orbiting in a far elongated elliptical orbit compared to the originally planned orbit, LIR can capture the full Venus disk in most of an orbiting period. The pixel field-of-view is 0.05°, which is four times larger than those of UVI, IR1 and IR2.

LIR has an internal image accumulation function to improve noise-equivalent temperature difference (NETD). This function is called as primary accumulation, which is performed during each exposure. Image data are sent to DE, and up to 32 images can be accumulated. This is called as secondary accumulation. In the nominal observation sequences both primary and secondary accumulation numbers are set to be 32 which gives the best NETD according to the pre-launch test results, and an image acquisition sequence takes about two minutes. An image acquisition sequence without accumulation is also equipped to take an image with a very short exposure time of 1/30 sec, and used when the ground speed of spacecraft is large.

In the first orbiting period LIR took 19 images from Dec. 7 to Dec. 11. The shortest time separation between successive images was two hours. This is chosen so that a wind vector field can be properly derived by a cloud-tracking method. From Dec. 12 to Jan. 14 observation was suspended due to important operations on spacecraft which did not allow the observations in parallel. Observation restarted on Jan. 15.

As a matter of course data amount that can be transferred from spacecraft to ground is limited by bit rate of telecommunication. In the nominal observation plan time interval of image acquisition by LIR is two hours, and it can be shortened to be one hour in a special observation period.

In the first shot by LIR after VOI-R1 several amazing features which have never been seen before are identified at a glance. A huge bow-shape high temperature region extending from the northern high-latitudes across the equator to the southern high-latitudes exists around the evening...
terminator. The temperature in the southern polar region seems to be the highest in the snapshot. Dark filament-like streaks aligned north-south direction are found in the low latitudes. They are also identified in the UV image. Interpretation of these interesting features will be discussed in the presentation.

Keywords: cloud morphology
Initial results of IR2 camera on board Akatsuki

*Takehiko Satoh¹, Makoto Suzuki¹, Yasumasa Kasaba³, Munetaka Ueno², George HASHIMOTO⁴, Takao M. Sato¹, Takayuki Enomoto⁵

1. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 2. Kobe University, 3. Tohoku University, 4. Okayama University, 5. SOKENDAI

Akatsuki, after its successful orbit insertion on 7 Dec 2015, is under the initial check-out phase. IR2, a 2-um camera on board Akatsuki, is to investigate the Venusian atmospheric dynamics, distribution of the trace gas, aerosol properties and mechanisms of their production and maintenance.

The detector of IR2 is a 1024x1024 pixels PtSi (17-um pixel pitch), combined with the f=84.2 mm lens (F/4, Nikon). The field of view is a square of 12 degrees on a side. To suppress the dark current in PtSi, it is cooled to ~65 K, while the optics including filters are < 190 K to reduce the infrared radiation. Such cooling is achieved by a single-stage Stirling cooler from Sumitomo Heavy Industries, the company responsible to the entire IR2 system.

IR2 has 4 Venus filters: 1.735, 2.26, and 2.32 um are for the night-side of Venus. These "windows" are wavelength regions where CO2 absorption is relatively weak and the thermal emissions originating the lower atmosphere can leak to the space. Therefore, these windows allow imaging of lower clouds as silhouette and enable measurements of atmospheric dynamics in deeper levels. The 2.32-um filter, in CO absorption band, allows to map the distribution of CO in the lower atmosphere. We de-cloud by differentiating 2.32-um image from nearly-simultaneous 2.26-um image. The 2.02-um filter for the day-side allows the cloud top altimetry by utilizing the strong CO2 absorption.

In this paper, we present initial results of data analysis acquired during the check-out phase, and will present the latest data from the orbit.

Keywords: Venus atmosphere, near-infrared, cloud property, CO
Radio occultation observation of Venus atmosphere in Akatsuki mission

*Takeshi Imamura¹, Hiroki Ando¹

¹Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency

The Radio Science experiment (RS) in the Akatsuki mission of JAXA aims to determine the vertical structure of the Venus atmosphere, thereby complementing the imaging observations by onboard instruments. The physical quantities to be retrieved are the vertical distributions of the atmospheric temperature, the electron density, the H2SO4 vapor density, and small-scale density fluctuations. The uniqueness of Akatsuki RS is quasi-simultaneous observations with multi-band cameras dedicated to meteorological study; the locations probed by RS are observed by the cameras a short time before or after the occultations. An ultra-stable oscillator (USO) provides a stable reference frequency, which is needed to generate the X-band downlink signal used for RS. The USO was switched on and tested successfully in February 2016.

Keywords: Venus, Akatsuki, radio occultation
Cloud top structure of Venus retrieved from Subaru/COMICS mid-infrared spectra

*Takao M. Sato¹, Takehiko Satoh¹, Hideo Sagawa², Atsushi Yamazaki¹, Toru Kouyama³, Takeshi Imamura¹

¹.Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, ².Kyoto Sangyo University, ³.National Institute of Advanced Industrial Science and Technology

Venus is completely shrouded by a curtain of dense clouds (50-70 km) with total optical thickness of 20-40 at visible wavelengths. The upper sulfuric acid (H₂SO₄) clouds reflect ~76% of the incident solar radiation back to space [Crisp and Titov, 1997]. Approximately 50% of the solar energy absorbed by Venus is deposited at altitudes higher than 64 km mainly due to unknown UV absorber mixed in the upper clouds [Tomasko et al., 1980]. In addition, infrared radiation from the lower atmosphere is absorbed by the clouds. To elucidate the cloud structure which controls thermal balance of the planet, we analyzed the mid-infrared images obtained by the Cooled Mid-Infrared Camera and Spectrometer (COMICS) mounted on Subaru Telescope [Sato et al., 2014]. We found several important findings near the cloud top altitudes (~70 km), such as the possibility that the westward rotation of the polar features is synchronized between the northern and southern hemispheres, and temporally variable small-amplitude patterns distributed in the entire disk. In order to investigate what atmospheric parameters are responsible for these features seen in the images, we have also analyzed mid-infrared spectra taken on the same date by the same instrument.

A ground-based spectroscopy of Venus was carried out at the solar phase angle of ~90 deg, with the morning terminator in view, using Subaru/COMICS on October 29, 2007 (UT). The entire N-band (8-13 μm) spectra were obtained with a spectral resolving power of R ~ 250, which is equivalent to that of the Fourier Spectrometer onboard Venera 15 [Moroz, 1986]. The slit, which was sufficient to capture the northern and southern limbs of Venus (angular diameter ~25 arcsec), was set to be parallel to the central meridian of Venus just off the nightside limb and Venus was scanned toward the dayside limb. The observed thermal radiation in this wavelength range is emitted mainly from altitudes ~65-70 km.

From slit-scan images composed of a total of 78 spectra, polar hot spots and cold collars in both hemispheres are clearly seen and day-night asymmetry is also found, which are consistent with the characteristics of snapshots at 8.66 μm and 11.34 μm taken by imaging observations on the same date [Sato et al., 2014]. The spectra near 9.6 μm are unavailable due to the contamination of O₃ in the Earth’s atmosphere even after the careful data reduction. There are two identifiable CO₂ bands (12.1 μm and 12.7 μm). For both bands, the spectral features appear in absorption for the equatorial region and in emission for the southern cold collar. This qualitative characteristic is consistent with our knowledge obtained from Venera 15 [Moroz, 1986]. Such information as well as overall spectral shape is useful to retrieve atmospheric parameters, for example, cloud top temperature, cloud top altitude, and cloud scale height.

To estimate how accurately atmospheric temperature can be retrieved from 8-13 μm spectra, as a first step, we performed a sensitivity test with VIRA-2 temperatures [Zasova et al., 2006]. The pseudo observed spectra were calculated from several combinations of VIRA-2 temperatures and a cloud model [Zasova et al., 2007; Eymet et al., 2009], and an inversion technique [Smith, 1970] was applied to these spectra while changing the initial guess of the temperature profile. As a result, we found that the temperature in altitudes ~65-70 km can be retrieved with the uncertainty of ~2 K. In this presentation, we will show the mid-infrared spectra of Venus obtained by Subaru/COMICS and primitive results of atmospheric parameters retrieved from the observed spectra.
Keywords: Venus, cloud structure, ground-based infrared spectroscopy, radiative transfer
Ground-based observations of the formation and periodical rotation of the global scale UV-feature on Venus cloud top

Masataka Imai, Yukihiro Takahashi, Makoto Watanabe, Toru Kouyama

1.Department of Cosmosciences, Graduate School of Science, Hokkaido University, 2.Artificial Intelligence Research Center National Institute of Advanced Industrial Science and Technology

On Venus, the atmosphere moves rapidly in the westward direction, reaching velocities 60 times the rotation velocity of the solid globe. This atmospheric “super-rotation,” was first detected in the 1960s, however, the mechanism of super-rotation remains mysterious. A planetary-scale bright and dark UV feature, known as the “Y-feature,” rotates around Venus with a period of 4-5 days and has been long-time interpreted as a planetary wave. When assuming this, its rotation period and spatial structure might help to understand the propagation of the planetary-scale waves and find out their role in the acceleration-deceleration of the zonal wind speed, which is essential for understanding the super-rotation of the planet. The rotation period of the UV feature varied over the course of observation by the Pioneer Venus orbiter (PVO). However, last work issuing this crucial topic was made more than 15 years ago, and, since PVO was operated in nearly fixed inertial space, the periodicity variations on sub-yearly timescales (one Venusian year is ~224 Earth days) were obscured by the limitation of continuous dayside observations.

We newly conducted ground-based Venus imaging observations at 365 nm, which consists of six periods covering over half or one month from mid-August 2013 to the end of June 2014 and one continuous periods from mid-April to end of July 2015. Distributions of the relative brightness were obtained from the equatorial to mid-latitudinal regions in both hemispheres, and from the cyclical variations of these distributions we deduced the rotation periods of the UV features of the cloud tops albedo. The relative brightness exhibited periods of 5.2 and 3.5 days above 90% of significance. The relative intensities of these two significant components also seemed subject to temporal variations.

In 2013 and 2014, although the 3.5-day component persisted throughout the observation periods, its dominance over the longer period varied in a cyclic fashion. The prevailing period seems to change from 5.2 to 3.5 days in about nine months, what is clearly not-coincident with the Venusian year (224 days). The amplitude of relative brightness variation is weak during the transition periods of dominant-wave changing. It was indicated that the stability of the planetary scale UV-feature were observed only in the presence of single longer or shorter periodic waves. In 2015, 3.5-days and 5.2-days wave periods could be observed. We success to obtain the change of the first significant mode from 3.5-day wave to 5.2-day wave continuously. As the former observation results, Venus experienced the absence of dominant-wave mode during the transition periods, and the time scale of the transition is estimated about one month in that period.

Keywords: Venus, Y-feature, Ground-based telescope
Analysis of fine structures of Venusian clouds using VMC on Venus Express

*Yusuke Nara¹, Takeshi Imamura¹, Shin-ya Murakami²

¹Department of Earth and planetary Science, University of Tokyo, ²Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science

At low latitudes of Venus observed by ultraviolet wavelength range, turbulent-like patterns are observed at the cloud top (Markiewicz et al., 2007). Although it is usually thought that the cloud in the visible wavelength range has little contrasts, structures of clouds are discernible by the observation of Venus Express (Titov et al., 2007). The structures observed by visible wavelength range reflect the horizontal distribution of clouds' thickness because the absorption of sunlight by the “unidentified absorber” which is important in ultraviolet wavelengths is not significant. Since visible light is strongly related to the energy budget of Venus, to study features of clouds in visible wavelength range is important.

In this study, we analyzed the structures of Venusian cloud at low latitude using the data obtained by VMC on Venus Express spacecraft. Using a method of enhancing contrast of the cloud features, which simultaneously eliminates one-dimensional streaky noises fixed to the detector, the contrasts of the cloud features become clear even in the visible wavelength range. We discuss the spatial structures of the Venusian clouds in the visible wavelength range.

Keywords: Venus, visible image, cloud morphology
Detailed temperature structure of the Venusian atmosphere revealed by radio holographic analysis of radio occultation data

mayu miyamoto2, *Takeshi Imamura1

1.Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 2.Department of Earth and Planetary Science, The University of Tokyo

Radio occultation (RO) is one of the most important measurement techniques for studying planetary atmospheres. Radio occultation method relies on the measurement of the frequency shift of the received signal caused by the bending of radio waves in the radial gradient of the refractive index in the atmosphere. The relationship between the impact parameter and the bending angle is retrieved from the observed frequency shift, and this relationship yields the vertical profiles of the refractive index, from which the temperature profile is obtained. The geometrical optics (GO) method has long been used for the analysis of RO data. However, this method cannot disentangle multipath rays, which often occur in the temperature inversion region at high latitudes in the Venusian middle atmosphere. Furthermore, vertical resolution is limited by the size of the Fresnel zone (∼1 km for a typical spacecraft-tangential point distance of 2 Venus radii and the wavelength of the radio wave of 3.6 cm).

Radio holographic methods have been proposed for processing of RO signals in multipath regions and obtaining atmospheric profiles with high resolution. One of them is the Full Spectrum Inversion (FSI), which was recently applied to GPS occultation data of the Earth’s atmosphere. By applying the FSI technique to ESA’s Venus Express RO data, we demonstrated the applicability of this technique to Venus’ atmosphere.

The new vertical temperature profiles obtained by FSI technique seem to well reproduce the temperature structure in the multipath region and achieve high vertical resolution (∼150 m). Thin, near-neutral layers were found in the high-resolution static stability profiles in the high latitude. This feature can be attributed to generation of turbulent layers by breaking gravity waves. The static stability profile in the middle and high latitude tends to show sharp transition from neutral stratification below ∼60 km to stable stratification above, suggesting that the convective layer and the overlying stable layer are adjacent to each other with a very thin transition region. Such a condition is favorable to convective generation of gravity waves.

Keywords: Venus, radio occultation, FSI
Two dimensional numerical experiment of the Venusian gravity waves by using a cloud resolving model

*Hiroki Ando¹, Ko-ichiro SUGIYAMA¹, Masatsugu Odaka², Kensuke Nakajima³, Takeshi Imamura¹, Yoshi-Yuki Hayashi⁴

1.ISAS/JAXA, 2.Hokkaido University, 3.Kyushu University, 4.Kobe University

Atmospheric gravity waves influences the atmospheric circulation due to the heat and momentum transports associated with their propagation and breaking. Recently gravity waves are often observed in the Venusian atmosphere by optical and radio occultation measurements (e.g. Peralta et al. 2008; Ando et al. 2015). Convection in the Venusian cloud layer, which is located at 50 to 70 km altitudes, is thought to be one of the main sources of the gravity waves. We have investigated the convective motion and wave generation and propagation due to it by using two dimensional numerical model (Ando et al. JPGU 2014) and found that the reproduced gravity waves satisfy the dispersion relationship, but wave amplitude and energy depend on the resolution and numerical viscosity set in our model. In this presentation, we change the resolution and numerical viscosity and examine the shape of the energy spectrum obtained in each case to determine the appropriate resolution and numerical viscosity to reproduce the gravity waves. Furthermore, we show the energy spectrum distribution and calculate the acceleration rate associated with the momentum convergence in the vertical direction in the case where we use these appropriate values.

We use a cloud resolving numerical model “deepconv” (Sugiyama et al. 2009). The horizontal domain is 500 km, and the vertical domain corresponds to 35 to 135 km altitudes in the Venus atmosphere. There are no stress, vertical flow and potential temperature flux at the upper and lower boundaries. Side boundary is a periodic one. To prevent the wave reflection at the upper and lower boundaries, we introduce Rayleigh friction within 35 km down from top boundary and 5 km up from bottom boundary. To prevent generation of the mean zonal wind we also add artificial friction to zonal wavenumber 0 component. Newtonian cooling is also introduced in our model on the basis of Crisp (1989). Initial vertical temperature profile is based on Ikeda et al. (2010), who derived the temperature distribution under the radiative-convective equilibrium. This profile has a neutral stable layer within the altitude rage of 48-54 km and a stable layer above and below it. We use net solar heating and infrared radiative cooling profiles based on Ikeda et al. (2010), assuming that they are horizontally uniform and do not change temporally. We assume that the atmosphere is stationary at the initial stage. To generate convective motion potential temperature perturbation with the maximum amplitude of 1 K at 50 km altitude, and we perform the numerical calculation for 15 Earth days. Horizontal resolution is constant of 200 m, and we use three vertical resolution cases (16, 32, 64 m) and four numerical viscosity cases (1×10⁻⁴, 3×10⁻⁴, 1×10⁻³, 3×10⁻³, 1×10⁻⁵ m² s⁻²).

As a result, in the case where vertical resolution is less than 32 m and numerical viscosity is less than 3×10⁻³ m² s⁻², all the calculated spectral amplitude are almost equal. Within the altitude region of 66 to 98 km, where gravity waves propagate upward, the spectral amplitude decreases with the altitude. The spectral slope is about -2 within the horizontal wavenumber range of 10⁻⁴ < k < 10⁻³ (1/m) and -3 of 10⁻³ < k (1/m). In particular, the spectral slope in the former case is consistent with that empirically suggested on the basis of the observations of gravity waves in the Earth’s atmosphere. Furthermore, the acceleration rate in the horizontal direction associated with the wave dissipation increases with altitude, and it is ~1 m s⁻¹ day⁻¹ at 90 km altitude.
Keywords: Venus, Atmospheric gravity waves, Numerical calculation
Study of the Venusian cloud formation and distribution in low- and mid-latitudes using a GCM: Effects of atmospheric chemistry and circulation

Kazunari Ito¹, Takeshi Kuroda¹, Yasumasa Kasaba¹, Naoki Terada¹, Kohei Ikeda², Masaaki Takahashi³

¹Department of Geophysics, Tohoku University, ²National Institute for Environmental Studies, ³Atmosphere and Ocean Research Institute, The University of Tokyo

Sulfuric acid clouds cover the Venusian atmosphere in 48-70 km, and are important in the Venusian climate through their radiative processes. The clouds are the main objective of the JAXA Akatsuki orbiter for the investigations of atmospheric dynamics, so the modeling study of the formation and advection of them using a Venusian General Circulation Model (VGCM) is of significance also for the help of the mission. We have implemented the sulfuric acid cloud formations and related chemical processes into a VGCM, and investigated their distribution and the formation systems.

We used the VGCM modified from the CCSR/NIES/FRCGC AGCM [Ikeda, 2011], with the horizontal resolution of T21 (longitude and latitude grids of about 5.6 degrees) and 52 levels in vertical with the sigma (equivalent to the pressure) coordinate (the top altitude of ~95 km). For the cloud condensation and evaporation processes, the effects of supersaturation are not considered and the radius of cloud aerosol is artificially distributed into 4 modes by ratios based on the vertical profiles shown by Haus and Arnold [2010]. Note that our model at the moment does not include the growth or reduce of the particle size, and only traces the advection of produced clouds. Also note that the cloud distributions should modulate the thermal distributions through radiative effects, but the current model still assumes constant heat input profile (as well as the former code by Ikeda [2011]).

Our model includes the chemical processes related to the production and loss of H₂SO₄ vapor (SO₃, SO₂ and H₂O) in order to reproduce the realistic maintenance processes of cloud distributions. In the model with those chemical processes (hereafter WC model), the simulated latitudinal distributions of the optical thickness of clouds agree with the observational results by the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) onboard Venus Express (VEX), and also the simulated vertical profiles of H₂SO₄ vapor agree with the Magellan radio occultation data, in low- and mid-latitudes (0-70° N). On the other hand, in the model without the chemical processes (hereafter NC model), the cloud opacity distributions become less than half of the observed ones, and also the abundance of H₂SO₄ vapor around 48 km becomes less than half in comparison with the WC model. Clouds are formed above ~50 km in both models, but the abundances in the WC model are larger than those in the NC model. The difference of the WC model is caused by the production of H₂SO₄ vapor due to the chemical processes and the condensation of it into the clouds in the upper cloud region (60-80 km). We conclude that our VGCM reproduces the observed features with a good reliability in low- and mid-latitudes with chemical processes.

With this VGCM, we investigated the maintenance and circulation processes of the sulfuric acid clouds and vapor in low- and mid-latitudes. Our model indicated that, in the upper cloud region, the clouds are produced centered at ~65 km altitude, and flow upward and poleward by the meridional circulation and vertical diffusion. Meanwhile, in the lower cloud region (50-60 km), H₂SO₄ vapor transported by the upward advection and vertical diffusion condenses into the cloud in the equatorial region at the altitude of 50-54 km, and the formed clouds are transported poleward along the meridional circulation. These cycles are consistent with those simulated in a 2-D latitude-altitude cloud formation model by Imamura and Hashimoto [1998] with a given meridional circulation, and we first reproduced the cycle in a VGCM. Using this new VGCM, we showed that the diurnal tide mainly contributed to drive the meridional circulation through the wave-zonal mean...
flow interaction in low- and mid- latitudes.

Keywords: Venus, Sulfuric acid clouds, Atmospheric chemistry, General circulation model, Akatsuki
Small-scale disturbances reproduced by AFES for Venus
(Atmospheric general circulation model For the Earth Simulator)

*Norihiko Sugimoto\(^1\), Masahiro Takagi\(^2\), Hiroki Ando\(^3\), Hiroki Kashimura\(^4\), Takeshi Imamura\(^3\), Yoshihisa Matsuda\(^5\), Wataru Ohfuchi\(^4\), Takeshi Enomoto\(^6\), Yoshiyuki O. Takahashi\(^7\), Yoshi-Yuki Hayashi\(^7\)

1. Department of Physics, Research and Education Center for Natural Sciences, Keio University, 2. Kyoto Sangyo University, 3. JAXA/ISAS, 4. JAMSTEC, 5. Tokyo Gakugei University, 6. Disaster Prevention Research Institute, Kyoto University, 7. Graduate School of Science, Kobe University

An atmospheric general circulation model (AGCM) for Venus on the basis of AFES (AGCM For the Earth Simulator) have been developed to perform a very high-resolution simulation (e.g., Sugimoto et al., 2014a). The highest resolution is T319L120, namely, there are 960 times 480 horizontal grids (grid intervals are about 40 km) with 120 vertical layers (layer intervals are about 1 km). In the model, the atmosphere is dry and forced by the solar heating with the diurnal and semi-diurnal change. The infrared radiative process is simplified by the Newtonian cooling. Then the temperature is relaxed to a prescribed horizontally uniform temperature distribution which has a virtual static stability of Venus with almost neutral layers. We set a fast zonal wind in a solid-body rotation as the initial state.

Starting from this idealized superrotation, the model atmosphere reaches a quasi-equilibrium state within 1 Earth year. This state is stably maintained for more than 10 Earth years. The zonal-mean zonal flow with weak midlatitude jets has almost constant velocity of 120 m/s in latitudes between 45°S and 45°N at the cloud top levels, which agrees very well with observations. We have investigated small-scale disturbances reproduced in the model. In the cloud layer, baroclinic waves develop continuously at midlatitudes and generate Rossby-type waves at the cloud top (Sugimoto et al., 2014b). At the polar region, warm polar vortex zonally surrounded by a cold latitude band (cold collar) appears successfully (Ando et al., 2016). As for horizontal kinetic energy spectra, divergent component is broadly (k > 10) larger than rotational component compared with that on Earth (Kashimura et al., in preparation). In the presentation, the relation between small-scale gravity waves and large-scale thermal tides will be also shown.

Keywords: Venus, GCM, Waves
Status of Millimeter-wave Band Ground-based 10m-SPART Telescope for Monitoring Observations of the Middle Atmospheres of Terrestrial Planets in the Solar System.

Hiroyuki Maezawa

1. Department of Physical Science Osaka Prefecture University

To understand the influence of activities of central stars on the atmospheres of terrestrial planets in the solar system and of exoplanets, we are performing monitoring observations of millimeter-waveband spectral lines of carbon monoxide, 12CO(J = 1-0, J=2-1) and 13CO(J = 2-1) of the Martian and Venusian atmosphere with a 10-m telescope, Solar Planetary Atmosphere Research Telescope (SPART). Heterodyne spectroscopy with high frequency resolution is a powerful tool to trace the weak and narrow spectral lines of minor constituents in the middle atmosphere of planets.

The results obtained with SPART suggest that the disk-averaged mixing ratio of carbon monoxide derived at an altitude of 80 km in Venus was about 60 ppmv during 2012 and 2015. This observing period corresponds to the solar cycle 24 maximum phase. The mixing ratios of CO seem to be lower than those observed during the solar cycle 22 maximum phase. These may suggest that the abundance variations of CO are related to solar activities. For understanding of the CO production induced by solar energetic particles (SEP) events, we performed a numerical model on the basis of the Bethe–Bloch formula under conditions of typically great solar-proton events with incident-proton energies of less than 1 GeV. The obtained results suggest that the ionization rate reaches its maximum at an altitude of 80–90 km in the Venusian atmosphere. However it was found that the production rate of CO is smaller than that induced by incident ultraviolet radiation at the altitude. Although currently the operation environment of the SPART telescope is renewed for opening to the general public at Nobeyama Radio Observatory, we will restart the monitoring observations soon after the construction within this year in anticipation of integrated researches with the AKATSUKI.

In this conference, we will present the current status of the SPART project briefly.

Keywords: Venusian atmosphere, Radio Telescope, Solar Activity
Radiative Transfer Simulations for 1.9 THz Band Remote Sensing Observations of the Martian Atmosphere with SMILES-2

*Yuji Nishida¹, Kosuke Saito¹, Kazunori Morimae¹, Daiki Haraguchi¹, Hiroyuki Maezawa¹, Hideo Sagawa², Makoto Suzuki³, Masato Shiotani⁵

1.Osaka Prefecture University, 2.Kyoto Sangyo University, 3.JAXA, 4.ISAS, 5.Kyoto University

For better understanding of global warming and space weather predictions, recovery of Ozone layer, physics and dynamics such as planetary and gravity waves, and chemical reaction networks of the Earth’s middle atmosphere, the Submillimeter Wave Limb Emission Sounder 2 (SMILES-2) mission is currently being studied. The target species of the SMILES-2 are H₂O, N₂O, NO, NO₂, CO, H₂CO, OH and O-atom, and so on, which are also key species to study the CO₂ stability problem on the terrestrial planets of the solar system and the formations/sources and destruction processes of CH₄ on Mars. The SMILES-2 will employ 4 K-cooled superconductor/insulator/superconductor mixer detectors and superconducting hot-electron bolometer mixer (HEBM) detectors for the frequency bands below 600 GHz and above 1.8 THz, respectively.

Currently we are developing a superconducting NbTiN HEBM detector integrated with a waveguide slot and a horn antenna for 1.8–2.0 THz band remote sensing observations. We also carried out the feasibility studies of the spectral lines of HOₓ, CO, NOₓ, and their isotopes in the Martian atmosphere observed with SMILES-2 equipped with the HEBM by performing the radiative transfer simulations. In this conference, we will present the results of these simulations.

Keywords: SMILES-2, THz, Remote Sensing, Mars
Effects of ion-ion collisions on vertical \(\text{CO}_2^+ \) profiles in Martian ionosphere under magnetic field penetration: Multi-fluid MHD

*Kyohei Koyama\(^1\), Kanako Seki\(^2\), Naoki Terada\(^3\), Kaori Terada\(^3\)

1.Graduate School of Science, Nagoya University, 2.Graduate School of Science, University of Tokyo, 3.Graduate School of Science, Tohoku University

The escape of the planetary atmosphere is an important phenomenon related to evolution of the atmosphere, and numerical simulations are an effective method to understand the global atmospheric escape processes. The escape of \(\text{CO}_2^+ \) from Mars observed by Mars Express is presumed that the origin of \(\text{CO}_2^+ \) escape flux is result of the ionospheric outflow. In this process, the escape of massive amounts of \(\text{CO}_2^+ \) requires relatively high density of \(\text{CO}_2^+ \) at high altitude ionosphere. Ionospheric model developed by Fox and Hac [2010] presumed chemical reaction and velocity difference for each ion fluxes in ionosphere to reproduce the density disturbance of \(\text{CO}_2^+ \) in high altitude ionosphere. This result suggests velocity difference is important to reproduce the high \(\text{CO}_2^+ \) density in high altitude ionosphere. Multi-fluid MHD, it is the model allows ion fluxes to take individual velocities, has developed Najib et al., [JGR, 2011], but the model has not include the effects of the collisions between ions. In our previous research, we developed Multi-fluid MHD and reproduced Martian ionosphere. To investigate effects of collisions, we conducted 5 cases of the simulation. Case1: Multi-fluid MHD includes electron-neutral and ion-ion collisions, Case2: Multi-fluid MHD without electron-neutral collision, Case3: Multi-fluid MHD without ion-ion collisions. Case4: Multi-fluid MHD without electron-neutral and ion-ion collisions. Case5: Multi-fluid MHD. From this previous study, we obtained the effects of velocity differences between ion fluxes and collision for \(\text{CO}_2^+ \) vertical density distribution. Our recent study is the effect of solar wind magnetic field on Martian ionosphere using under developing Multi-fluid model. Mars has no intrinsic magnetic field. So that, solar wind magnetic field penetrates into Martian ionosphere when the solar wind magnetic field is in active state. When solar wind magnetic field penetrates, Martian ionosphere is contracted, and ion-fluids are accelerated by magnetic field. Our Multi-fluid MHD code can describe individual velocity of ion fluxes, ion-ion collisions, electron-neutral collision, and effects of magnetic field for ion fluxes with different speeds. In this presentation, we report the dependence of ionospheric condition on magnetic field strength and ion velocity in the upper boundary.

Keywords: Mars, Ionosphere, Multi-Fluid MHD
An MHD simulation study of the Kelvin-Helmholtz instability at the Martian ionopause with a day-to-night density gradient

*Sae Aizawa¹, Naoki Terada¹, Yasumasa Kasaba¹, Manabu Yagi¹, Yosuke Matsumoto²

¹Graduate School of Science, Tohoku University, ²Graduate School of Science, Chiba University

The effect of a day-to-night density gradient on the evolution of the Kelvin-Helmholtz instability (KHI) at the Martian ionopause is investigated using 2-D extended-local MHD simulations. The KHI is expected to play a major role in transporting mass, momentum and energy across the ionopause between the sheath flow and the Martian ionospheric plasmas, and is thus regarded as one of the candidate processes that have removed a huge amount of ions from Mars through its long history.

Recent local MHD simulation studies have pointed out that a density gradient in the vertical direction significantly reduces its linear growth rate and its maximum growing wavelength mode becomes longer. A longer wavelength mode makes KH vortices more inhomogeneous during the nonlinear phase [Amerstorfer et al., 2010]. However, the actual ionopause has a density gradient not only in vertical but also in the horizontal (day-to-night) direction. In order to investigate the effects of a day-to-night density gradient, we have developed two extended-local MHD models by incorporating two elements of a global model, i.e., an aperiodic boundary condition and the day-to-night density gradient, into a local model.

Comparing the results of the aperiodic case (extended-local model without a day-to-night density gradient) with those of the periodic case (local model), we find two notable differences in the evolution of the KHI. Firstly, while the evolution of the main vortices group is mostly the same in both cases, that of the leading vortex is quite different [YK1], [AS2]. The main vortices group rises and its intrusion into two regions is symmetrical with the ionopause but the leading vortex does not enter the sheath region in the linear growth phase. On the other hand, the leading vortex seems to be squeezed by the sheath region while the main vortices group does not show such a squeezing like structure. Secondly, the ionospheric plasma in the aperiodic case is excavated about 1.5 times deeper. We find that these two differences are caused by the asymmetry in the structure of both sides of each vortex. When there is another vortex with a larger amplitude just downstream of a vortex, this structure behaves like a wall, the sheath flow will be stagnated by this wall-like structure. This stagnated sheath flow induces an enhanced vortex return flow, resulting in a deeper excavation of the ionospheric plasma. Previously, it has been thought that the mixing area will spread widely over time. The Deeper excavation of the leading vortex enhances mixing of ions. In addition, we also find the elongated filament structure is caused by the asymmetry in the structure of both sides of the vortex. A wall-like structure downstream side which mentioned above and an insufficient vortex motion on the leading (upstream) side of a KH vortex leads to vortex return flow and an imbalance between the pressure gradient force and the centrifugal force associated with the vortex motion. The vortex cannot keep its structure and will be an elongated filament. These asymmetries in the vortex structure are responsible for making two differences between the aperiodic and the periodic cases.

We also add the day-to-night density gradient to the aperiodic case by reference to MEX observation results [Duru et al., 2008]. We find that the KHI is quickly excited in the downstream (low density) region. It has been thought that the KH wave propagates from upstream to downstream, i.e., one-way propagation. This excitation in the downstream indicates that the perturbations associated with the KH wave propagate not only to the downstream but also toward the opposite direction, with highly elongated filamentary structures in downstream.

In those simulations, we evaluate the effect of the day-to-night density gradient on the loss rate.
of the ionospheric ions. We find that the day-to-night density gradient reduces the ions loss efficiency with 30-40%.

Keywords: Mars, Kelvin-Helmholtz instability, MHD simulation
Comparison of Martian Magnetic Pileup Boundary with Ion Composition Boundary Observed by MAVEN

*Kazunari Matsunaga¹,², Kanako Seki³, David A. Brain⁴,⁵, Takuya Hara⁶,⁷, Kei Masunaga⁵, James P. McFadden⁶,⁷, Jasper S. Halekas⁸, David L. Mitchell⁶,⁷, Christian Mazelle⁹,¹⁰, Jack E. P. Connerney¹¹, Bruce M. Jakosky⁴,⁵

¹Graduate School of Science, Nagoya University, ²Institute for Space-Earth Environmental Research (ISEE), ³Graduate School of Science, University of Tokyo, ⁴Laboratory for Atmospheric and Space Physics (LASP), ⁵University of Colorado at Boulder, ⁶Space Sciences Laboratory (SSL), ⁷University of California, Berkeley, ⁸University of Iowa, ⁹IRAP CNRS, ¹⁰University Paul Sabatier, Toulouse, ¹¹NASA Goddard Space Flight Center

The Martian upper atmosphere directly interacts with the solar wind, since Mars does not possess the intrinsic global magnetic field. This interaction forms a transition region between the shocked solar wind (magnetosheath) and the ionosphere, in which characteristic boundary structures are embedded. In this transition region, the neutral atmospheric heavy atoms can be ionized and involved into the solar wind flow. This is called the mass loading process [e.g., Dubinin and Lundin, 1995]. The loaded heavy ions form a dense layer which called “ion composition boundary” (ICB). ICB separates the solar wind protons dominant region from the planetary heavy ions dominant one [e.g., Erkaev et al., 2007]. Since the interplanetary magnetic field (IMF) frozen-in the solar wind plasma, IMF also drape around the transition region. Due to the draping IMF piles up in the front of the Martian upper atmosphere, the magnetic pileup boundary (MPB) is formed [e.g., Luhmann et al., 2004].

Previous studies have shown existence of the magnetic pileup region or the induced magnetosphere in the transition region. Mars Global Surveyor (MGS) observed MPB, a boundary between the magnetosheath and the Martian magnetic pileup region by its magnetometer and electron reflectometer [e.g., Vignes et al., 2000, Trotignon et al., 2006]. ICB was also observed by the ion mass analyzer of Phobos 2 and Mars Express (MEX) [e.g., Breus et al., 1991, Dubinin et al., 2006]. Due to the lack of continuous simultaneous observations of the magnetic field and ion composition, however, relations between MPB and ICB are far from understood. In this study, we investigate relative locations and characteristics of MPB and ICB, and their dependence on solar wind parameters, utilizing a full package of plasma instruments onboard Mars Atmosphere and Volatile Evolution (MAVEN).

We conducted a statistical analysis of the ion, electron, and magnetic field data obtained by MAVEN from November 2014 to March 2015 in order to investigate relations between MPB and ICB. We identified MPB from the electron and magnetic field data by inspection based on criteria of Trotignon et al. [2006]. We calculated the density ratio between the planetary heavy ions and the solar wind protons to investigate the ion composition around MPB. Results show that there is a north-south asymmetry in locations of MPB and ICB. Observations also indicate that the relative location of MPB and ICB has deference between dayside and nightside. Moreover, the southern crustal magnetic fields seem to play a role of the north-south asymmetry in locations of MPB and ICB. However, dependences of MPB and ICB on the solar wind dynamic pressure, density, and velocity are not clear. The solar wind induced magnetic field direction also has no clear effects on ICB and MPB locations.

Keywords: Mars, Induced magnetosphere, Magnetic Pileup Boundary, Ion Composition Boundary, Unmagnetized planet, MAVEN
O+ ion beams reflected below the Martian bow shock

*Kei Masunaga1, Kanako Seki1, David Brain2, Xiaohua Fang2, Yaxue Dong2, Bruce Jakosky2, James McFadden3, Jasper Halekas4, Jack Connerney5

1.Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Japan, 2.Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, USA, 3.Space Science Laboratory, University of California Berkeley, USA, 4.Department of Physics and Astronomy, University of Iowa, USA, 5.NASA Goddard Space Flight Center, USA

We investigate a generation mechanism of O+ ion beams observed above the Martian bow shock by analyzing ion velocity distribution functions (VDFs) measured by the Superthermal and Thermal Ion Composition (STATIC) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. In the solar wind near Mars, MAVEN often observes energetic O+ ion beams (~10 keV or higher). Accompanied with the O+ ion beam events, we sometimes observe characteristic ion VDFs in the magnetosheath: a partial ring distribution or a hook-like distribution. The partial ring distribution corresponds to pickup ions with a finite initial velocity (i.e. not newborn pickup ions). Thus the partial ring distribution is most likely to be produced by the reflection of the precipitating O+ ions below the bow shock. After being injected into the magnetosheath from the solar wind, the precipitating O+ ions are subject to the significantly enhanced magnetic field in this region, and consequently, a part of precipitating O+ ions are reflected back to the solar wind, generating O+ beams in the solar wind. The hook-like distribution contains two ion populations: a mixture of local O+ pickup ions and O+ pickup ions precipitating from the solar wind right above the bow shock, and O+ pickup ions precipitating from the upstream solar wind and being reflected below the bow shock. The latter population also generates the O+ ion beams in the solar wind. The reflected O+ beams are reaccelerated by the convection electric field in the solar wind and may escape Mars.

Keywords: Mars, ion reflection, MAVEN
Global structure of Mercury's magnetosphere: Dependence on solar wind parameters

*Manabu Yagi¹, Kanako Seki², Yosuke Matsumoto³, Dominique Delcourt⁴, Francois Leblanc⁴

1. Graduate School of Science, Tohoku University, 2. Graduate School of Science, Tokyo University, 3. Graduate School of Science, Chiba University, 4. CNRS

Based on observations by MESSENGER, Mercury's magnetosphere is thought to be a miniature of the Earth's magnetosphere. These two magnetospheres have several characteristics in common, however, some critical differences are also evident. First, there is no atmospheric layer, but only tenuous exosphere. Second, the kinetic effects of heavy ions might not be negligible because Mercury magnetosphere is relatively small compared to the large Larmor radii. Recent observation by MESSENGER also found that the center of dipole is shifted to northward about 485km from the center of Mercury. Trajectory tracings is one of the dominant methods to estimate the kinetic effect of heavy ions which originate the exosphere, though the results of the simulation are quite sensitive to the electric and magnetic field. Therefore, it is important to provide a realistic field model in the trajectory tracings. In order to construct a large scale structure, we developed a MHD simulation code, and adopted to the global simulation of Mercury magnetosphere. In this study, first we performed two cases of simulation, low and high solar wind density cases (35cm⁻³, 70cm⁻³, and 140cm⁻³) with velocity for 400km/s and northward IMF condition. When solar wind density is low, magnetopause is formed at 1.4Rₘ, and the global structure has weak north-south asymmetry in the MHD simulation. One of the important characteristics is open field line from south pole even in the northward IMF condition without Bx and By components. When solar wind dynamic pressure is high, Mercury's magnetosphere is compressed to the scale of Mercury itself. In this case, planetary surface disturbs the magnetospheric convection, and the north-south symmetry as well as similarity to Earth's magnetosphere are strongly violated. Trajectory tracings in the MHD fields show that there are enough space for energetic (~ few keV) sodium ions which are the main component of 'sodium ring' at the vicinity of the planet to go through the dayside magnetosphere in the low density case. In the high density case, dayside is too compressed and there are no space for sodium ions to go through. As a result, 'sodium ring' became not isotropic ring but formed only at nightside. In the next step, we performed higher dynamic pressure of the solar wind condition, it is, density for 140cm⁻³ and velocity for 800km/s. This parameter is rarely occurred except for the extreme case such as CME events. The result of MHD simulation shows that most of magnetic filed lines are opened, and continuous tail reconnection occurred by extremely high dynamic pressure. These structure and phenomenon partly correspond to that of magnetosphere with southward IMF, while magnetospheric convections are largely different because no magnetic reconnection occurs at the dayside magnetosphere. Another characteristics is secondary compression region in the magnetosheath at flank side of the planet. First compression is occurred by planetary surface at the front side and formed what we call bow shock. Second compression is caused by magnetopause at the flank side which lies at the direction of sheath flow. In the presentation, we will also report the ongoing simulation result of trajectory tracings in this extreme case.

Keywords: Mercury's magnetosphere, MHD
Ionic composition in the Io plasma torus measured using Hisaki/EXCEED and gourd-based telescope

Masato Kagitani

1. Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University

Volcanic gases (mainly composed of SO\(_2\), SO and S) originated from jovian satellite Io are ionized by interaction with magnetosphere plasma and then form a donut-shaped region called the plasma torus. Ion composition in the plasma torus is a key issue to investigate a source region and production mechanisms of magnetospheric plasma. A coordinated observation of EUV spectroscopy by Hisaki/EXCEED with a ground-based spectroscopy by Kitt Peak 4-m telescope enables to measure composition of most of ions (S\(^+\), S\(^++\), S\(^+++\), O\(^+\) and O\(^++\)) in the plasma torus.

At the beginning of January 2014, intense campaign observations of Jovian aurora and Io plasma torus were made using Hisaki/EXCEED, Hubble Space Telescope and other ground-based telescopes covering wavelength range from EUV through IR. The 4-meter R.C. Spectrograph was set up covering 550nm through 800nm which could successfully detect NaD (589nm), [S III] 631.2nm, [S II] 671.6/673.1nm, and [O II] 731.9/733.0nm as well. A field-of-view was 98 arc-seconds along the slit and the slit center was pointed at the dawn or dusk edge of the centrifugal equator. We could get 54 spectra from the observation during January 4th through 10th, 2014.

Based on analysis of visible spectrum from Kitt-Peak 4-meter, typical emission intensity of [S II] 671.6+673.1nm, [S III] 631.2nm and [O II] 731.9+733.0nm were 700R, 100R and 60R, respectively. Combining the visible spectrum with EUV spectrum measured by EXCEED/Hisaki, plasma diagnostics can be made on the plasma torus. According to the atomic database, CHIANTI version 8.0, the best fit ion composition was S\(^+\):S\(^++\):S\(^+++\):O\(^+\):O\(^++\) = 4:27:11:13:40. The result shows that the average ionization state was higher than that at Cassini era in 2004. More accurate analysis including errors and uncertainty is ongoing, the recent result will be presented at the meeting.

Keywords: Io plasma torus
Variations of Io's volcanism seen in Jupiter's sodium nebula

Mizuki Yoneda\(^1,2\), Masato Kagitani\(^2\), Takeshi Sakanoi\(^2\), Fuminori Tsuchiya\(^2\), Shoichi Okano\(^1\)

1.Kiepenheuer Institute for Solar Physics, 2.Planetary Plasma and Atmospheric Research Center, Tohoku University

Io, which is one of Jupiter's remarkable moons, is the most volcanically active body in the solar system. Io's volcanic gas forms its atmosphere, but it cannot stay on Io stable. It is ionized due to the solar radiation or impacts by Jupiter's magnetospheric energetic particles, then escapes and forms the Io plasma torus. Sodium chloride molecules included in Io's volcanic gas are also ionized, then picked up by Jupiter's co-rotating magnetic fields and going to the Io plasma torus. In the torus, these molecular ions collide with the torus electron, then they distract and neutral fast sodium atoms are produced. These sodium atoms have velocity of Jupiter's co-rotation at an orbit of Io that corresponds to 74 km/s. This is enough to escape from Jupiter's gravitational-sphere. The sodium atoms whose origin is Io's volcano form a extend cloud around Jupiter, and this is called Jupiter's sodium nebula. This nebula can be seen at sodium D-line wavelengths from the ground. The brightness in the sodium nebula is changing with respect to volcanic activity on Io. We have been making the observations of this sodium nebula from an observatory on Mt. Haleakala in a conjunction with the HISAKI spacecraft whose one of main targets is Jupiter's magnetosphere. The sodium nebula shows a distinct enhancement in its brightness in January-April 2015. In this presentation, volcanic activity on Io in a period of the HISAKI observations will be shown.

Keywords: Io, Jupiter, Volcanism, magnetosphere
The wave structure in Jupiter's polar region and the asymmetric distribution of the polar cup haze

*Yuya Gouda¹, Yukihiro Takahashi¹, Makoto Watanabe¹

¹Department of Cosmosciences, Graduate School of Science, Hokkaido University

In the Jupiter stratosphere, the polar cup hazes exist in both hemispheres whose edges show the wave structure. Previous observations, such as by Cassini ISS in 2000 or the Hubble Space Telescope (HST) from 1994 to 1999 [Barrado-Izagirre et al., 2008], show that the polar region is covered by bright diffuse haze and its edge has a wavy structure spreading in longitudinal direction with wavenumber of 12 -14 at 67° S, which travels westward with a phase velocity of 0-10 m/s. These observations suggested that this wave structure is caused by a planetary Rossby wave. However, these observations had been carried out only every other year and the variance of short time scale (about month) is not clear. The spatial range of this wave structure have not been investigated.

The aim of this study is to clear dynamics of the wave structure which vary within few days or few weeks. This is achieved by the continual observation using a methane absorption band filter at 889 nm installed at Multi-Spectral Imager (MSI) of the 1.6 m Pirka telescope. To investigate spatial structure of this wave, we measure the boundary of the low-latitude side of the wave. We also clear the vertical structure in polar region using observation at wavelengths that absorption by methane are different. In addition, identify of distribution of the haze structure is also purpose of this study.

In this presentation, we introduce the observational results of time variation of the wave structure in Jupiter’s south polar region in 2011 to 2015 by the ground-based telescope. Each result is separated by few days to few weeks. Our results show the variation of the wave structure within few weeks for the first time. It is found that disappearance of wavy positive peak at longitude 100° in 18 days by the time variation of the wave structure. The wave structure change locally in a short period. The longitudinal difference of the vertical wave propagation is found by observation at some wavelength that observational altitude are different. It is possible that which is different from Rossby wave. It was suggested that not only Rossby wave but also locally and short-period wave structure exist in the polar region. It is cleared that the wave structure at 67° S is only seen at 56° S by the latitudinal variation of the wave structure. Thus, the spatial distribution of the wave structure is constrained.

In addition, the spatial distribution of polar cup haze in the north hemisphere is asymmetry for the north pole. This corresponds with a sharp of auroral oval at some longitude. It is suggested the relationship haze structure and auroral oval.

Keywords: haze, wave structure
Measurements of Jupiter's decametric source locations by LWA1 modulation lane data

Kazumasa Imai, Masafumi Imai, Charles A. Higgins, Tracy Clarke

1.Kochi National College of Technology, 2.Kyoto University, 3.Middle Tennessee State University, 4.Naval Research Laboratory

Jupiter’s decametric emissions originate along magnetic field lines within auroral zones as well as field lines that pass through Io and the Io plasma torus. The radio waves at Jupiter are amplified by particle-field interactions and are generated in both the X-mode and O-mode. Due to the emission source parameters, right-hand (RH) polarized waves are generated from northern hemisphere sources (Io-A and Io-B sources) while left-hand (LH) polarized waves come from the southern hemisphere (Io-C and Io-D sources).

The modulation lanes in Jupiter’s decametric radiation, which were discovered by Riihimaa [1968], are groups of sloping parallel strips of alternately increased and decreased intensity in the dynamic spectra. Extensive systematic observations of modulation lanes have been made in the frequency range 21 to 23 MHz by Riihimaa [1970, 1974, 1978]. The frequency-time slopes of the lanes can be either positive or negative, depending on which of the Jovian sources is being observed. In the Imai et al. model for the production of modulation lanes, the lanes are assumed to be a manifestation of interference fringes from the line source consisting of the points along the axis of the Io-activated flux tube that are emitting at the different local values of fc. The fringes are produced as a result of the passage of the multi-frequency radiation through an interference grating. This grating is a planar grid of almost equally spaced field-aligned columns of enhanced plasma density, perpendicular to the ray-paths toward Earth, located near the sub-Earth point on Io’s orbit. Radiation from each of the frequencies emitted by the line source produces a set of interference fringes when it is scattered by the plasma-enhanced columns. These sets of fringes are inclined with respect to the Jovian equator. The rotation of Jupiter sweeps the inclined interference patterns for the different frequencies across Earth, producing the modulation lanes in the observed dynamic spectra. We developed a model to explain the production of the modulation lanes [Imai et al., 1992a, 1992b, 1997, 2001, 2002]. By using our model the precise Jupiter’s radio source locations and beam parameters can be measured. This new remote sensing tool is called as the modulation lane method.

The Long Wavelength Array (LWA) is a low-frequency radio telescope designed to produce high-sensitivity, high-resolution images in the frequency range of 10-88 MHz. The Long Wavelength Array Station 1 (LWA1) is the first LWA station completed in April 2011, and is located near the VLA site in New Mexico, USA. LWA1 consists of a 256 element array, operating as a single-station telescope. The sensitivity of the LWA1 combined with the low radio frequency interference environment allow us to observe the fine structure of Jupiter's decametric modulation lanes. Using newly available wide band modulation lane data observed by LWA1, we measured source locations and beam parameters. The results of LWA1 data analysis indicate that the radio emitting sources are located along the restricted range of longitude. We only receive one of the individual sources which has a very thin beam thickness (probably less than few degrees) at a given time. We show the measured locations of Io-related sources based on the modulation lanes observed by LWA1. The new components of Io-C and Io-B sources are discussed.

Keywords: Jupiter radio, modulation lane, radio source locations
Elucidation, this is the engine of Super-Rotation caught by Venus Express/ESA

*Hirofumi Mase

1.none

Only At this line, hot body - cold body - hot body, the hot body pulls each other(1). I call this hypothesis "2-temp.-rotating-disk"(Rotating-Disk). It's revealed that it can be observed easily every time at one period of Candle Oscillator(2). I'd like to explain this time the mechanism of the atmosphere's superrotation of Venus(SR) that the knowledge which Venus Express(VEX)/ESA got doesn’t contradict.

I enumerate the matter(a-e) which can be confirmed when seeing image sequence of vortex in about 2000km radius from the South Pole at an altitude of about 65km(Fig.01-13)(4). (a)It's general that the vortex and the circumference(Territory) do the left rotation overall(Precession, angle 14deg./2h). (b)By skid or excessive rotation or both of them, in a body, Territory is moving(max 2000km) in a short time(4h) once per 2 days(Great Movement)(Fig.01,04,07,10,13). (c)By the movement that Territory was grasped at a specific place and was driven, all Great Movement advanced towards the direction where 150deg.W is made the center. (d)By changing the shade while maintaining the size-shaped mostly, the huge vortex occurs and disappears. But the shape of every vortex is various. (e)By Great Movement, the center of gravity of the vortex comes away big from the rotation center. And the new vortex of a state that both of them agree occurs. It changes from the previous one and meets next Great Movement.

I got (f)(g)(h) from the above. (f)Fact of (a)(b) shows that the structure(probably, flywheel and gyro) that Territory rotation doesn't collapse by Great Movement is equipped. (g)Fact of (b)(c) shows that a specific place in Territory is pulled to the point of almost fixing outside Territory. (h)Fact of (d)(e) shows that the vortex maintains, by flows along its structure, the rotational energy to the extent of that the Territory-rotation is influenced. And shows that, when the vortex rotation becomes unjust by external force(Great Movement), the vortex changes and adapts itself to the environment.

I'd like to build the model that fills (f)(g)(h) at the same time(Fig.17). At Layer2 where the high 65km is made the center, cold parts coexist with hot parts and polar dipole(6) is formed. This vortex produces flows in self-controlled way by using temperature structure and maintains the rotational energy by becoming rotational flow overall. This is main drive force of SR(Rotating-Disk1). Layer3, where the high 80km is made the center, is mounted on Layer2, and the same movement is done. When Hot Block near the edge of Layer3 is close to the point of polar collar, Hot Block is pulled each other between Hot Belt(turned by Rotating-Disk1)(Rotating-Disk2). SR is promoted temporarily at this time, so this must also be drive force of SR. (The part of Hot Belt is attracted to the pole direction)

Through "caster", Layer2 and Layer3 get on the turn-table-Layer1 that has the function of the flywheel and the gyro. Drive force is transmitted to Layer1 from Layer2 and Layer3. Stability is transmitted to Layer2 and Layer3 from Layer1.

A plan to study the Venus’ haze based on SOIR/Venus Express and AKATSUKI

*Seiko Takagi¹, Arnaud Mahieux², Valérie Wilquet², Séverine Robert², Rachel Drummond¹, Ann Carine Vandaele², Naomoto Iwagami³

1.Tokai University, Research and Information Center, 2.Belgian Institute for Space Aeronomy, 3.Department of Earth and Planetary Science, the University of Tokyo

The Venus cloud consists of a main cloud deck at 47–70 km, with thinner hazes above and below. The upper haze on Venus lies above the main cloud surrounding the planet, ranging from the top of the cloud (70 km) up to as high as 90 km.

The Solar Occultation in the InfraRed (SOIR) instrument onboard Venus Express (ESA) was designed to measure the Venusian atmospheric transmission at high altitudes (65–165 km) in the infrared (2.2–4.3 µm) with high spectral resolution. We investigated the optical properties of the Venus’s haze above 90 km using the SOIR solar occultation observations. Vertical and latitudinal profiles of extinction, optical thickness, and mixing ratios of haze were retrieved. We find that haze extinction and optical thickness at low latitudes are two times higher than those at high latitudes. One of the noticeable results is that haze mixing ratio increases with altitude above 90 km at high and low latitudes. Therefore we speculate that haze could be produced at such high altitudes.

On December 7, 2015, AKATSUKI (JAXA) arrived at Venus after orbit insertion. Some instruments onboard AKATSUKI will observe characteristics of cloud and haze particles. In this presentation, a plan to elucidate Venus’s cloud including haze layer creation and maintain process in using observation data of SOIR/Venus Express and AKATSUKI will be proposed.

Keywords: Venus, AKATSUKI, Venus Express, cloud
Near-Infrared spectro-polarimetry of Venusian upper cloud structure

*Takayuki Enomoto, Takehiko Satoh, Koji Kawabata, Hiroshi Akitaya, Ryosuke Itoh

In estimating structures of planetary atmosphere by means of remote sensing, simultaneous determination of various parameters is required. The problem doesn’t get easier even for simple structure such as thin haze layer above thick cloud layer. In case that the size of cloud and haze particles is distinctively different, however, parameters of both layers should be determined by considering the wavelength dependence of the characteristics. In this paper, we propose such a technique and report a result obtained by adapting to Venusian atmosphere.

Spectro-polarimetry in near-infrared region is specific technique. Venusian main cloud consists of the cloud and haze particles, of which the radii are on the order of 1µm and sub-micron, respectively (Mie theory can be adopted). The advantages in near-infrared region (0.9μm<λ<2.5μm) are

1. characteristics of the cloud is dominant because of rapid decrease of scattering cross-section of hazes, and
2. a neutral point (point where the sign of polarization changes) exists and is easy to detect.

Using such characteristics, we can determine the parameters of the main cloud independently from hazes.

We calculated radiative transfer including polarization in semi-infinite cloud (cloud particle size is standard: r=1.05µm) in near-infrared region. The sign of polarization turned negative to positive with an increase of wavelength (hereafter we use λ_n as the transition wavelength). Additionally, when particle sizes were changed as r=0.8µm (small), 1.05µm, 1.5µm (large), λ_n were found at 1.81µm for standard particle, at 1.46µm for small particles, at 2.28µm for large particles. Therefore, the particle size within the range of 0.8µm<r<1.5µm can be determined by obtaining λ_n from spectro-polarimetric observations in J, H and K band (central wavelength is 1.25µm, 1.65µm and 2.2µm, respectively) range.

In order to validate this technique and to study the cloud properties of Venusian cloud, which we have recently detected rapid decrease of hazes on, we performed observations at Higashi-Hiroshima observatory / Hiroshima University from May 19 through 25, 2015. We used “HONIR” (Hiroshima Optical and Near-Infrared) instrument attached to “Kanata” telescope. Observing wavelengths are J, H and K bands. We observed Procyon (unpolarized standard star) for calibrations of mechanical polarizations caused in its optical system, and we verified that we don’t need to do such calibrations. There are variations of 0.2% in the polarization degrees (P[%]), which means that measurement error is of such degree.

The inclination of obtained polarization spectra P(λ) of low latitude of Venus is dP/dλ=4.5%/µm. With the combination of dP/dλ and measurement error (±0.2%), we obtained determination accuracy ±0.05µm for λ_n. Since dλ_n/dr is ~1.16, which is deduced by r dependence of λ_n obtained from model calculations described above, we finally have ±0.04µm in average for the determination accuracy of particle size. Obtained λ_n of Venus are λ_n=2.1µm for May 21, and λ_n=2.2µm for May 22, 24, 25. Those λ_n obtained on May 21 and the other days are similar to the results of model calculations for r=1.2µm and r=1.35µm, respectively. This result indicates the existence of larger particles compared with the particle size (1.05µm) of standard model (Esposito et al., 1983).

Rossi et al. (2014) reported some cases that model calculations for cloud particle size r=1.2µm is consistent with the near-infrared (λ=1.1µm, 1.27µm) polarimetric data of low latitude of Venus obtained in Apr. and May 2010 by SPICAV onboard Venus Express, we possibly detected such variations

©2016. Japan Geoscience Union. All Right Reserved. - PCG21-P03 -
in Venusian cloud.

Keywords: Venusian Upper Cloud, Spectro-polarimetry
Development of Fiber IFU for Venus Cloud Tops

*Manabu Yamada¹, Masato Kagitani³, Atsushi Yamazaki²

1. Planetary Exploration Research Center, Chiba Institute of Technology, 2. Institute of Space and Astronautical Science / Japan Aerospace Exploration Agency, 3. Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University

Venus cloud absorbs solar radiation at wavelength between 200nm and 500nm. The absorption of wavelength between 200nm and 320nm is well explained by SO₂ at the cloud tops, but the absorption at longer wavelength has not been identified yet. The comparison between the spatial features of different wavelength may clarify number of unknown-absorbers, but only one bandpass filter or one wideband filter with transmittance around 365nm has been used by telescopes and instruments of previous observation.

We are developing a spectrum imaging instrument using fiber array. Spectrum imaging can take several images of different wavelength at same time, and it is suitable for studying the UV-blue absorber of Venus. We thought a new manufacturing method of a fiber array with several hundred of fiber with diameter of ~100μm, and improvement has been added to the method for practical use. Optics using the fiber array are designed for Haleakala 60-cm. We will report performance of our instrument and plan to observation of Venus.

Keywords: Fiber integral field units, Ultraviolet observation, Venus atmosphere
Venus upper atmosphere as observed by Hisaki: Dayglow and ion tail

*Kei Masunaga¹, Kanako Seki¹, Naoki Terada³, Fuminori Tsuchiya⁵, Tomoki Kimura⁴, Kazuo Yoshioka¹, Go Murakami⁵, Atsushi Yamazaki⁵, Chihiro Tao⁶, Ichiro Yoshikawa⁷

¹.Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, ².Deptartment of Geophysics, Graduate School of Science, Tohoku University, ³.Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University, ⁴.Nishina Center for Accelerator Based Science, RIKEN, ⁵.Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, ⁶.National Institute of Information and Communications Technology, ⁷.Department of Complexity Science and Engineering, University of Tokyo

Hisaki was launched on September 14, 2013. Since then, we have conducted quasi-continuous observations of the upper atmosphere of Venus by using the Extreme Ultraviolet Spectroscope for Exospheric Dynamics (EXCEED) [Yoshioka et al., 2013; Yoshikawa et al., 2014] on-board Hisaki. Our observation aims to see variations of the EUV dayglow of Venus and to detect ions, such as O⁺ and C⁺, escaping from Venus.

From three quasi-continuous observations in 2014, we found characteristic periodic variations of oxygen EUV dayglow [Masunaga et al., 2015]. In 2015, we conducted new observations of Venus upper atmosphere covering different local times or different latitude from those in 2014. Our result shows that the ~4 day periodicity is observed on the dawn side of Venus. We suggest that gravity waves may propagate from the middle atmosphere of Venus, where the atmosphere is super-rotating with a 4-day period, to the upper atmosphere of Venus. The local time difference of the ~4-day periodicity of the dayglow suggests that there is a local time difference in wave propagation altitudes or wave filtering structures.

Using the 10" slit of EXCEED, we also observed Venus tail region to detect ion tail escaping from Venus. The 10" slit has a better pointing accuracy than that of the 60" slit. The result shows that C⁺ ion tail (CII 133.5 nm) is detected with SNR > 1. We discuss the escape rate of C⁺ ions from Venus by assuming cold C⁺ ions are escaping from Venus.

Keywords: Hisaki, EXCEED, Venus, Dayglow, Ion escape
Monitoring Observations of Millimeter-Wave Band Spectral Lines of Carbon Monoxide in the Middle Atmospheres of Venus with the SPART Telescope

*Daiki Haraguchi¹, Kazunori Morimae¹, Naruaki Tanekura¹, Kosuke Saito¹, Yuji Nishida¹, Kazutoshi Ohnishi¹, Hiroyuki Maezawa¹, Kazuyuki Handa, Tomio Kanzawa, Masaaki Oya, Jun Maekawa, Hiroyuki Iwashita, Masao Saito, Hideo Sagawa, Munetoshi Tokumaru, Akira Mizuno

1.Osaka Prefecture University

For understanding of influences of solar activities and space weather on the middle and lower atmospheres of the terrestrial planets in the solar system, we have been carrying out the monitoring observations of the millimeter-wave band spectral lines of carbon monoxide (¹²CO $J=1-0$ 115.2712018 GHz, $J=2-1$ 230.538 GHz, 13CO $J=2-1$ 220.3986765 GHz) of the middle atmospheres of Mars and Venus with a 10m-telescope, SPART (Solar Planetary Atmosphere Research Telescope) since it was launched in 2011. The SPART employed highly sensitive 100 and 200 GHz double band superconducting SIS heterodyne detectors and 1 GHz band digital fast Fourier transfer spectrometer with the frequency resolution of 67 kHz. This highly frequency-resolved heterodyne spectroscopy is powerful tool to trace the weak and narrow spectral lines of minor constituents in planetary middle atmosphere.

The results observed with SPART showed the disk averaged mixing ratios of CO derived at the altitude of around 80 km in case of Venus were around 60 ppmv during 2011 to 2015. This observing period corresponds to the solar cycle 24 maximum phase according to the 1 GHz band flux data observed with the Nobeyama Radio Polarimeters (NoRP). The mixing ratios of CO seem to be lower than those observed during the solar cycle 22 maximum phase. These suggest that solar activities might have no small effect on the abundance variations of CO.

Keywords: Venus, Ground-based Radio Telescope, Solar Activity
Development of 1.9-THz-band Waveguide-type Hot-electron Bolometer Mixer Employing Superconducting NbTiN Microbridge

*Hiroyuki Maezawa¹, Kosuke Saito¹, Yuji Nishida¹, Tatsuya Soma², Osamu Oguchi², Satoshi Yamamoto¹

¹Department of Physical Science, Osaka Prefecture University, ²The faculty of science, University of Tokyo

Many spectral lines for rotational, rotation-vibration, and fine-structure transitions of gas species in the interstellar medium and planetary atmospheres lie in the millimeter to terahertz waveband. In this frequency band, heterodyne spectroscopy with high frequency resolution is a powerful tool for understanding of the basic physical and chemical properties of planetary atmospheres and interstellar media. Despite its scientific and observational importance, 1–10-THz-band radio astronomy and remote sensing have long been unexplored because of the lack of good observing sites and the unavailability of sensitive heterodyne detectors in this frequency range.

We are currently developing a 1.9 THz band waveguide/diagonal-horn type HEB mixer employing a superconducting NbTiN micro-bridge fabricated using in situ sputtering techniques. The crucial observational targets for this frequency band are OH radicals, H₂O, and [OI], which are important oxidants in the chemical-reaction network in the atmosphere of Earth and other planets; [OI] and [CII] lines, which are the basic coolants of the interstellar medium; and other complex and high-J molecules.

The optical system and waveguide probe of the HEB mixer receiver that couple the input signal were newly designed with 3D electromagnetic-field simulators, GRASP and HFSS(TM). The fabrication of the waveguide chip slot of which the dimensions are 50 µm width and 40 µm depth were successfully realized by recent high-precision micromachining techniques. The performances of the diagonal horn such as beam pattern (axial symmetry and side-lobe levels) were newly optimized re-designing the length and truncated structures of the horn. The cold head of the 4 K mechanical refrigerator for the HEB mixer receiver has the temperature fluctuation of 0.2 K. By inserting the new optics as a buffer material between the cold head and the mixer we succeeded to reduce the fluctuation at the position of the HEB mixer to 1.6 mK, which is much smaller than the transition width of temperature between superconducting state and resistive state of the NbTiN microbridge. Therefore the reduced temperature fluctuation does not affect the performance of the HEB mixer.

In this conference, we will present the current developmental status of the newly fabricated 1.9-THz-band waveguide/horn-type HEB mixer detectors.

Keywords: Terahertz, heterodyne remote sensing, Superconducting detector
Measurements of the Venusian mesospheric wind and temperature profiles using mid-IR heterodyne spectrometer MILAHI

*Kosuke Takami¹, Hiromu Nakagawa¹, Hideo Sagawa², Shohei Aoki³, Yasumasa Kasaba¹, Isao Murata¹, Shigeto Watanabe⁴, Makoto Taguchi⁵, Takeshi Imamura⁶

¹Graduate School of Science, Tohoku University, ²Faculty of Science, Kyoto Sangyo University, ³Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di AstroFisica, ⁴Department of Cosmosciences, Hokkaido University, ⁵Rikkyo University, ⁶Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science

Mesospheres of terrestrial planets are the transition region between the lower and the upper atmosphere. Their altitudes are 50-90 km on Mars and 60-100 km on Venus, respectively. In Venus, it is also the transition region from the super-rotated upper cloud layer (altitude: 65-90 km, observed by JAXA Venus orbiter Akatsuki) to the thermospheric SS-AS (subsolar-antisolar) flow layer (altitude: 100-120 km). The observations of this region are not enough and disagree with the results of Venus International Reference Atmosphere (VIRA) [Sonnabend et al., 2010].

We have promoted the study of the wind velocity and temperature profiles in the Venusian mesosphere using MILAHI (Mid-Infrared LAser Heterodyne Instrument). It was developed in Tohoku University and installed to the Tohoku Univ. 60 cm telescope (T60) at Mt. Haleakala, Hawaii, and can achieve ~3.5 arcsec of spatial resolution and >~10⁶ of spectral resolution. This talk mainly shows the result observed by this system, and compares the derived wind velocity and temperature profiles with the early observational results of Akatsuki, in order to investigate of the effects of the dynamics in the Venusian cloud layer to the mesosphere.

We observe CO₂ non-local thermodynamic equilibrium (non-LTE) emissions at a wavelength of 10 µm from the altitude of 100-120 km. Temperature and wind velocity along the line of sight can directly be derived from the Doppler width and shift of emission line, respectively. Although similar measurement can be accomplished by CO line in mm and submm from the altitude of 80-110 km [e.g., Clancy et al., 2008], its spatial resolution is up to ~14 arcsec in single dish observation. We can resolve the Venusian disk with higher resolution and get their constant and long-term variations. In nightside, wind velocity and temperature profiles in the altitude region 70-95 km also be observed by CO₂ absorption lines at 10µm. Those retrieval is done by Advanced Model for Atmospheric TeraHertz Radiation Analysis and SimUlation (AMATERASU) [Baron et al., 2008] which performs forward (line-by-line radiative transfer and numerical modeling of instrumental characteristics) and inversion calculations.

We are now preparing the observation campaign in March 2016. Akatsuki will observe the atmospheric dynamics in the region between the surface and the altitude of 90 km. Our observation by MILAHI obtains the information at the region above them, and extend the vertical profiles above the cloud top toward the mesosphere. Akatsuki has several remote sensing instruments for those objectives; two imagers, LIR (wavelength range: 8-12µm) and UVI (wavelength: 283nm), with the radio occultation using USO. They will provide the temperature distribution near the cloud top (altitude: ~70 km) at nightside, the altitude of the cloud top and wind distribution near the cloud top (altitude: ~70 km) at dayside, and the vertical temperature profile at limb (altitude range: 35-90 km) twice in every orbital period, respectively. We will try to provide simultaneous and continuous ground-based observations.

In this study, we evaluate the vertically resolved profiles of Venusian atmosphere by the comparison between the temperature profile by MILAHI and the Akatsuki radio occultation. We also derive the daily variation of wind velocity profiles from cloud top to the mesosphere by UVI and
MLAHI in dayside, and evaluate the transition features between super-rotation and SS-AS flows. We also derive the daily variation of temperature profiles from the cloud top to the mesosphere by LIR and MILAHI in nightside.

Keywords: Venus, mesosphere, heterodyne, Akatsuki
Radiative transfer model combined with multiple scattering in planetary atmosphere: implication for a potential biomarker

*Shun Ishihara¹, Masayuki Umemura¹, Yu Komatsu¹

1.University of Tsukuba

The transit method is one of the main ways to detect extrasolar planets. Analyzing transit transmission spectra of the planets gives us the information on planetary atmospheres, since absorption and scattering by atmospheric molecules have wavelength dependence. As current data points in observed transit spectra are not enough to characterize planets, atmospheric compositions are estimated by comparing with theoretical models. It has been expected to characterize Earth-like planets in future observations. Oxygen and ozone are considered as potential biomarkers which originate from life in an Earth-like atmosphere. Therefore, it will be a good benchmark to find life outside the Earth that we discuss the detectability of these molecules in a variety of conditions.

Our study aims to estimate quantitatively how biomarker molecules are detected in observations. We develop a spherical radiative transfer model based on the TAU code by Hollis et al 2013, and perform mock observations for transmission spectra of Earth-like planets. We deal with multiple scattering in planets by assuming spherical atmosphere. We estimated how Rayleigh scattering and surface reflection affect the detection of biomarkers.

In a clear-sky condition, we evaluate if O2 and O3 are detectable from an Earth-like planet. The shape of the transmission spectrum changes when the planet is covered with the ocean. It indicates that we can identify the reflection from the ocean due to the Rayleigh scattering. In the corresponding wavelength region, absorption of O2 and O3 are too weak to be detected (at 1.27 and 2.47 µm, respectively).

Keywords: extrasolar planet, transmission spectra, mock observation
Ion acceleration by magnetic reconnection in the dayside ionospheres of unmagnetized planets

Hitoshi Sakamoto¹, Naoki Terada¹, Hiromu Nakagawa¹, Yasumasa Kasaba¹

¹Graduate School of Science, Tohoku University

We have examined magnetic reconnection in the dayside ionosphere of Venus and its application to other unmagnetized planets using a 2-D multi-species magnetohydrodynamic (MHD) model. Main object is to investigate the ionospheric ion acceleration and the escape processes associated with magnetic reconnection after an interplanetary magnetic field (IMF) reversal.

Magnetic reconnection is an efficient energy conversion process that converts the energy of magnetic field in an anti-parallel configuration into plasma kinetic and thermal energy. Thus, it is potentially important to accelerate and remove the ionospheric ions from unmagnetized planets and to understand the evolution of planetary atmospheres. Recently, magnetic reconnection has been observed around unmagnetized planets such as Venus and Mars [Eastwood et al., 2008; Halekas et al., 2009; Zhang et al., 2012; Hara et al., 2014; Harada et al., 2015]. However, there remain unsolved problems about magnetic reconnection after an IMF reversal; its spatiotemporal evolution and resulting atmospheric loss rate.

In this study, we performed three runs with different initial conditions. In order to examine the altitude where magnetic reconnection develops, different initial heights of the current sheet are given; 450 km (Run A), 360 km (Run B) and 260 km (Run C) altitudes. Our simulations showed that the fast magnetic reconnection called the plasmoid instability [Loureiro et al., 2007] occurs in Run A and Run B. On the other hand, the instability evolves slowly in Run C. From three runs, it is shown that the growth rate of the plasmoid instability is suppressed in the lower region of the ionosphere. For all cases, ionospheric plasmas are accelerated and ejected from the current sheet by magnetic reconnection. The averaged outflow velocities are 2.3 km/s for Run A, 2.8 km/s for Run B, and 0.4 km/s for Run C, respectively. It is indicated that the plasma is accelerated efficiently (up to 0.7-0.8 times the local Alfven velocity) in the upper ionosphere of Venus.

We also examined the O⁺ loss rates due to magnetic reconnection after an IMF reversal in three runs. The transient O⁺ loss rates are about 2.8x10²⁵ ions/s for Run A, 2.3x10²⁵ ions/s for Run B, and 5.5x10²⁴ ions/s for Run C. This difference is attributed to the difference in the outflow velocity. It is suggested that the escape rate due to the reconnection decreases with a decreasing initial altitude. We have compared the O⁺ loss rate due to magnetic reconnection with other escape processes, and concluded that the reconnection after an IMF reversal potentially contribute to oxygen loss if an IMF reversal frequently occurs.

Based on the simulation results and the theory of magnetic reconnection, we investigated the possible atmospheric loss by the magnetic reconnection after an IMF reversal at other unmagnetized planets. From an analytical estimation of the loss rate due to the reconnection after an IMF reversal, it is shown that the loss rate is proportional to local Alfven velocity and the number density of ionospheric ions. Using the parameter of the Martian ionosphere, we have estimated the O⁺ loss rates as 8x10²⁴ ions/s at the maximum. The estimated maximum loss rate is several ten times larger than that obtained from the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft [Hara et al., 2015].

Keywords: Venus, Mars, Magnetic reconnection
Solar wind conditions on the escape of oxygen from Mars

*Junji Miyazawa¹, Shigeto Watanabe¹

1. Planetary and Space Group Department of Cosmosciences Hokkaido University

The Martian atmosphere was warm and high pressure several billions of years ago [Carr, 1999]. The Martian atmosphere is dry and low pressure (636 Pa) [McKay and Stoker, 1989; Kerr, 2000; Baker, 2001]. Although about 95% of Martian atmosphere is CO₂, about 90% of escaping atmosphere is oxygen (O, O+) from the observation by Mars Express [Lundin et al., 2009]. Oxygen escape may be important for the evolution of the water of Mars. Mars does not have a significant internal magnetic field. The solar wind can penetrate to the Martian ionosphere altitude and interact with the Martian ionosphere [Acunã et al., 1998; Lundin et al., 2004]. Then, ionopause and bow shock are formed, and oxygen ion escape is strongly affected by the solar wind. The structures of ionopause and bow shock are important for oxygen ion escape. The important escape mechanisms of Martian atmosphere are Dissociative Recombination, Solar Wind pick up and Sputtering. The previous models do not include the effect of the collision of the escaping particles with the atmospheric particles and the escape of the collided secondary particles. Then, we constructed a model including dissociative recombination, solar wind pick up and sputtering processes, and investigated the amount of the atmospheric escape from Mars. We calculated the solar wind interaction with the Mars ionosphere with Magnetohydrodynamics equations and particle model of Oxygen, and we found that the solar wind conditions around Mars control the escape flux of Oxygen in Mars.

Keywords: Mars, Solar wind, Escape, Oxygen
Study of the solar wind influence on the Jovian inner magnetosphere using an ionospheric potential solver

Koichiro Terada, Naoki Terada, Yasumasa Kasaba, Hajime Kita, Chihiro Tao, Aoi Nakamizo, Akimasa Yoshikawa, Shinichi Ohtani, Fuminori Tsuchiya, Masato Kagitani, Takeshi Sakanoi, Go Murakami, Kazuo Yoshioka, Tomoki Kimura, Atsushi Yamazaki, Ichiro Yoshikawa

The solar wind hardly influences the convection in the Jovian inner magnetosphere, because the corotation of magnetospheric plasma dominates the convection there. However, the extreme ultraviolet spectroscopic (EXCEED) aboard the Hisaki satellite observed change in a dawn-to-dusk asymmetry in the brightness distribution of the Io plasma torus. This asymmetry can be explained by assuming the existence of a dawn-to-dusk electric field of ~3-7 [mV/m] around Io’s orbit. The influence of the solar wind is suggested as its cause: First, the solar wind compresses the Jovian magnetosphere. Then, the magnetosphere-ionosphere current system is modified, and the field-aligned current into the high-latitude ionosphere increases. As a result, the ionospheric electric field increases and penetrates to low-latitude regions. It is mapped to the equatorial plane of the magnetosphere along the magnetic field line, and the dawn-to-dusk electric field is created at Io’s orbit in the inner magnetosphere.

An ionospheric potential solver is one of the best tools to test this scenario quantitatively. The ionospheric potential solver is a simulation code by which we can investigate how the global ionospheric potential gets distributed responding to the input of the field-aligned current. We constructed an ionospheric potential solver and investigated whether the dawn-to-dusk electric field generated by the solar wind interaction could penetrate into the Jovian inner magnetosphere. We validated this potential solver by applying it to the Earth’s ionosphere and comparing with an established code [Nakamizo et al., 2012]. Our code succeeded to reproduce a similar potential distribution, however there remain minor differences caused by minor differences in the assumption of the ionospheric conductivities, i.e., their spatial distributions including relative positions to the field-aligned current. Then, we applied this code to the Jovian magnetosphere-ionosphere current system. As a peak intensity of the field-aligned current, we used a value based on the observation of FUV aurora by HST [Gustin et al., 2004] and adopted the Earth’s empirical model for its distribution [Hori et al., 2009]. We assumed the Jovian ionospheric conductivities as 10 percent of the Earth’s values [Tao et al., 2009]. The electric field mapped to Io’s orbit appears to be on the same order as or smaller than the value suggested by the Hisaki satellite observation. In this paper, we will present a result using more realistic spatial distributions of the ionospheric conductivities and the field-aligned current obtained from the Galileo spacecraft observation and a Jovian upper atmospheric model.

Keywords: Jupiter, Io plasma torus, dawn-to-dusk electric field
Study on dynamics of Jovian atmosphere by a colorimetric observation of surface structures

*Kazuto Iwasaki¹, Hidehiko Suzuki¹, Isshi Tabe², Sumito Hirota³

Stripe patterns called belts or zones with various colors persist on Jovian surface. Anticyclonic vortices called an oval with various scales and colors are maintained and drifted in the boundary between zones and belts. Some ovals have different colors despite they are formed simultaneously in same latitude region. Color changes of ovals after an interaction with other ovals were also reported. Such results suggest a strong relationship between dynamics of Jovian atmosphere and colors of local structures. However, detailed mechanisms for such color variations are still unknown. In this study, colors of remarkable Jovian structures like the great red spot (GRS), bands, and zones are focused on as a tracer of the Jovian atmospheric dynamics. It is essential to monitor the Jovian surface continuously to quantify color variations with various temporal scales. However, it is difficult to make a continuous monitoring of Jupiter with large telescopes due to limited machine time. Instead, large amounts of image data reported by amateur astronomers in the world have potential to achieve the continuous monitoring by combining them (e.g. Archive by Association of Lunar and Planetary Observers of Japan: http://zetta.jpn.ph/Alpo/latest/index.html). However, quantitative color comparison between color images acquired by different optics and sensors are basically difficult. It is necessary to have standard spectra to correct a white balance of these color images. Thus, a simple device which can observe visible spectra of Jovian surface with resolving spatial structures was developed. Since this device is compact and portable, an observation by combining it with established telescopes managed by public astronomical observatories is immediately possible. On a night of Dec 15 2015, a spectroscopic observation of Jovian surface atmosphere using the device and a 40cm diameter telescope in Kawasaki municipal science museum have been conducted. In this talk, results of the spectroscopic observation of Jovian surface on Dec 15, 2015 and an analysis method to quantify the colors of the surface structures using a chromaticity diagram are presented.

Keywords: Jupiter, atmosphere, colorimetry, GRS, spectroscopy, chromaticity diagram
Derivation of the vertical distribution of Jovian decametric S-burst sources based on ground-based observations for verification of the Jovian ionospheric Alfvén resonator model

*Yuasa Sasaki¹, Atsushi Kumamoto¹, Yuto Katoh¹, Hiroaki Misawa¹

1.Department of Geophysics, Graduate School of Science, Tohoku University

Vertical distribution of Jovian decametric (DAM) S-burst was studied based on the analysis of S-burst events simultaneously found in multiple frequency range in the ground-based observation. Using the determined repetition frequencies of the S-burst elements, scale height of the Jovian ionosphere has been estimated from Jovian ionospheric Alfvén resonator (JIAR) model. JIAR hypothesis was proposed by Ergun et al. [2006] and Su et al. [2006]. According to these studies, eigen-frequencies of JIAR are expected to determine the repetition frequency of S-burst elements. The ionospheric Alfvén resonator (IAR) model has been investigated through the theoretical studies and observations of the Earth’s ionosphere. In the IAR model, the fundamental and higher harmonic eigen-frequencies were analytically derived from parameters such as the Alfvén speed at the plasma density peak of the ionosphere, and the scale height of the topside ionosphere [Lysak, 1991; 1993].

In this study, we have observed Jovian decametric S-burst in a frequency range from 20 MHz to 40 MHz with a logperiodic antenna and a wideband receiversince 2012 at Yoneyama observatory of Tohoku University. These observations were performed mainly in Io-B source condition, in which Previous studies reported high occurrence probability of intense S-burst events. We especially focus on a simultaneous S-burst event in two different frequency bands (~23.5 MHz, hereafter DAM1, and ~27.0 MHz, hereafter DAM2) found at 15:56 on 24 November 2014. With assumption that emissions are radiated at the local electron cyclotron frequency, the geometric distance of the DAM1 and DAM2 sources are respectively estimated to be ~1.085 Rj and ~1.040 Rj based on the VIPAL magnetic field model [Hess et al., 2011] and the location of Io UV footprint [Bonfond et al., 2009]. The determined repetition frequencies of DAM1 and DAM2 were 22.3 Hz and 28.5 Hz, respectively.

The two emission sources are considered to be in the same magnetic field line or in the different magnetic field lines which are close to each other. In the both cases, we can assume that the repetition frequencies are equal to the fundamental and high harmonic eigen-frequency of JIAR, and that the ionospheric scale heights for DAM1 and DAM2 are common or quite similar. Therefore the Jovian ionospheric scale height is estimated to be ~1400 km and ~1800 km.

In the presentation, we will discuss the comparison results of the S-burst source altitude derived from the emission frequency and vertical distribution of the standing Alfvén waves in JIAR estimated from the eigen-frequencies of JIAR, also.
Observation of Jupiter's synchrotron radiation in the magnetospheric variation period

*Hiroaki Misawa¹, Fuminori Tsuchiya¹, Shinya Satoh¹, Hajime Kita¹, Mamoru Sekido¹, Kazuhiro Takefuji¹, Eiji Kawai², Tetsuro Kondo², Shingo Hasegawa²

1. Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University, 2. National Institute of Information and Communications Technology

Rapid variation of relativistic electrons in Jupiter's radiation has been inferred with the time scale of a day or less from the observation of Jupiter's synchrotron radiation (JSR) at 327MHz. The Galileo Jupiter orbiter data showed this rapid variation has some relation with the (recurrent) magnetic reconfiguration events (MRE) in the outer magnetosphere, however, the causality of the rapid variation of JSR and MRE have not been known yet. One plausible causality for MRE is proposed to be enhancement of mass loading originally brought by enhancement of plasma originated from Io. In the middle of Jan. to May, 2015, obvious Io plasma enhancement has been identified by the ground-based optical observation (Yoneda et al., 2015) and also the Hisaki spacecraft observation. This phenomena gives us a good opportunity to directly confirm the relation between the occurrence of rapid variation of Jupiter's radiation belt and enhancement of the Iogenic plasma. We have made a quasi regular JSR observation at 2.3GHz for about three weeks in March, 2015 using the Kashima 34m radio telescope with a new observation method to eliminate artificial radio noises. We will report the result of this JSR observation and discuss variation characteristics.

Keywords: Jupiter, synchrotron radiation, radiation belt, magnetospheric variation
Estimation of dawn-to-dusk electric field in the Jovian inner magnetosphere from emission asymmetry in the Io plasma torus

*Ryo Arakawa¹, Go Murakami², Hiroaki Misawa¹, Fuminori Tsuchiya¹, Hajime Kita¹

¹Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University, ²Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency

Past ground-based and probe observations show existence of dawn dusk asymmetry (DDA) in brightness distribution of the Io plasma torus (IPT) and suggest that it is caused by the dawn-to-dusk electric field (DDEF) of about 4 mV/m. Recent observation of IPT with the HISAKI satellite reveals that the DDA of emission intensity shows temporal changes in response to solar wind dynamic pressure, indicating the solar wind influence on the Jovian inner magnetosphere. Purpose of this study is to derive DDEF quantitatively from DDA of emission intensity from HISAKI observations and find which processes cause to make DDA in the emission intensity.

Because DDEF causes to shift a drift orbit of plasma to dawnward, electron temperature becomes higher in the dusk side than the dawn side due to the conservation of first adiabatic invariant. As an efficiency of electron impact excitation of ion depends on electron temperature, the emission intensity in the dusk side becomes higher than that in the dawn side. To estimate DDEF from the brightness asymmetry quantitatively, we considered following procedures. (1) Orbit of plasma is calculated by solving an equation of motion with the Runge-Kutta method under corotational and dawn-to-dusk electric fields. Two temperature electron distributions, thermal(5eV) and hot(50eV) components are considered and the adiabatic heating and cooling of electron are calculated for each component. (2) Assuming a conservation of total amount of plasma in a unit flux tube electron density changes by magnetic field intensity changes are also calculated at both the dawn and dusk sides. (3) Applying typical values of thermal and hot electron density of 2000/cc and 20/cc, respectively, and changes in electron temperature and density evaluated in (1) and (2). The ion volume emissivity is calculated by using the atomic data base (CHIANTI) for ion species : S++(68nm). (4) The change in the plasma distribution due to DDEF also changes line-of-sight lengths of IPT between the dawn and dusk sides seen from the earth. This effect is also taken into account. We carried out the procedure from (1) to (4) in the range of DDEF intensity from 0 to 10mV/m and derived the relation between electric field and the DDA of emission intensity.

To investigate contributions of the five factors described above (thermal and hot electron temperatures, thermal and hot electron densities, and the line-of-sight length) on the asymmetry in the emission intensity, we evaluated dependence of the asymmetry on each factor, where other four factors were fixed. From the result, it was found that the thermal electron temperature change dominated the asymmetry of emission intensity while hot electron has very minor contribution to it. This is responsible for electron temperature dependence of ion volume emissivity. The ion volume emissivity has weak dependence on electron temperature above 20eV in the wave length range of EUV.

By using the relation between DDEF and the asymmetry of emission intensity in the IPT derived in our study, we estimated DDEF intensity from HISAKI observations. The ratios of emission intensity at the dusk side to that at the dawn side on January 1 and 14, 2014 were 1.49 and 1.13, respectively. From these ratios we estimated DDEF intensity is 3.4mV/m and 1.0mV/m. To estimate DDEF intensity from HISAKI observations quantitatively, a more realistic model which includes radial plasma distribution in IPT and electron cooling effect due to radiation is needed.

Keywords: Io plasma torus, Dawn dusk electric field, Dawn dusk asymmetry
North-south asymmetry of Saturn's auroral radio emissions: The seasonal variation of their fluxes

*Ayumu Sasaki\(^1\), Yasumasa Kasaba\(^1\), Tomoki Kimura\(^2\), Chihiro Tao\(^3\), Laurent Lamy\(^4\), Baptiste Cecconi\(^4\)

\(^1\)Dep. Geophysics Graduate School of Science Tohoku University, \(^2\)Nishina-Center for Accelerator Based Science, RIKEN, \(^3\)Space Weather and Environment Informatics Laboratory Applied Electromagnetic Research Institute, \(^4\)LESIA, Observatoire de Paris

Saturn emits intense radio emissions, Saturn Kilometric Radiation (SKR), from the northern and southern polar region in 3-1200kHz. SKR is generated by field-aligned energetic auroral electrons via Cyclotron Maser Instability (CMI) at local cyclotron frequency. Saturn’s rotation period has been evaluated based on occurrence period of SKR because SKR source is fixed in the planetary magnetic field with highly anisotropic beaming, thus forming a corotating searchlight of radio emission. In the Saturn’s magnetic field directions, the right-handed circularly polarization (RH) emissions are from the northern region and the left-handed (LH) ones from the southern region, respectively. Cassini observations in the southern summer (2004-2009) showed that the period of SKR daily variation is variable [Kurth et al., 2008]. It was slightly longer in the southern (summer) hemisphere [Gurnett et al., 2009], but close to each other near the equinox (September in 2009) [Gurnett et al., 2010]. Related to this trend, we also studied the flux ratio between northern and southern SKR in 2004-2010, and showed that the LH (summer, south) is stronger than the RH (winter, north) in average [Kimura et al., 2013]. Those characteristics could be explained by the north-south asymmetry in the polar ionospheric conductivities, which are related to the seasonal variations of the solar EUV flux illuminating to the polar region. However, the clear scenario has not been yet established. For example, in the observations in the Northern summer after 2010, northern and southern SKR periods merged together and are not clearly separated [Provan et al., 2014; Fischer et al., 2015]. This fact could not be explained by the simple idea based on the polar ionospheric conductivities.

In this study, we extend the study in Kimura et al. (2013) to 2015 covering the northern summer. We note that the simple extension of the analysis period is hard because of the Cassini orbit bias. Since the SKR is stronger in the dawn side, Kimura et al. (2013) adopted the detection criteria that Cassini is at the dawn side (2h - 10h LT). And in order to avoid the visibility effect of SKR caused by its propagation, other selection criteria were also set in the latitude (-5 to +30deg (RH), +5 to -30 (LH)) and the distance from Saturn (10 - 100 Rs). However, because of Cassini’s apokrone after 2010 was gradually shifted from dawn to dusk, it becomes hard to get a large number of observations under the same criteria.

In this study, we kept the same latitude and distance criteria but used the all LT data set. But, at former we could see the different LT between the both SKR, so we couldn’t avoid the LT dependence. In parallel, at latter we selected +5deg in the latitude and verified the result about the data observed simultaneously for the north and south. In this revised result, the intensity of LH component in 2004-2009 (south, summer) was stronger ~+40 than RH (north, winter). In 2010-2012, the both SKR intensities got close to each other. After 2013, RH (north, summer) was stronger by ~20 than LH (south, winter). These results support the result in Kimura et al. (2013) that the summer hemisphere is more enhanced. The variation of SKR peak intensity by a running median with a window of +35 days to avoid visibility effect also showed same trend. However, it is not well explained that the flux ratio was more than 10 in southern summer but only 0.2-0.4 in northern summer. In this presentation, we will also show the correlation of these trends to the SKR rotational period, solar EUV activity, etc. (Cassini Solstice Mission will be finished in Sep.
Keywords: Saturn, SKR(Saturn kilometric radiation), North-south activity ratio, seasonal variation, Cassini
[OI]630.0nm emission in the Enceladus torus obtained with Haleakala T60/Vispec

*Hiromu Ono1, Takeshi Sakanoi1, Masato Kagitani1

1.Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University

The moon Enceladus, revolves round Saturn at 3.9 Saturn Radii(Rs), emits the plume mainly composed of water vapor from cracks in south polar region called "Tiger Stripe". This plume cause the neutral particle rich inner magnetosphere and the neutral density is ten times greater than the plasma density. Though, its time variation and spatial distribution has been discussed by models and simulation studies, there are few studies based on observation data. We aim to understand the physical processes in the Saturn’s inner magnetosphere based on continuous observation of atomic oxygen [OI]630.0nm emission. The [OI]630.0nm emission are caused by resonance scattering with sunlight and by electron impact excitation.

In this study, we carried out the Enceladus torus observation with a 60-cm telescope(T60) at Haleakala observatory and a high-dispersion spectrograph (Vispec:Visible Imager and Spectrograph with Coronagrophy). During a period from 2015/7/13 through 2015/9/18. Vispec adopts 1024pix×1024pix cooled-CCD as a detector covering the wavelength of 629[nm]-632[nm] with a wavelength dispersion of 5.98×10⁻³[nm/pix] with a 2×2 binning mode. We used two kind of slits; one is 60[μm] width×10[mm] length, or 100[μm] width×10[mm] length, of which correspond to FOVs of 300"x2",300"x3", respectively. In the former slit case, the slit was centered at a distance of 3.9Rs from Saturn and aligned parallel to the east-west direction of Saturn’s equatorial plane (E-W slit), and in the latter slit case, the slit was aligned in north-south direction(N-S slit) centered the same point. Exposure time was 20[min] per 1 frame, and we totally obtained 74 frames (38 frames of E-W data, 36 frames of N-S data). Using the N-S silt data(22 frames, total exposure time is 7.3[hour]), we estimated the [OI]630.0[nm] at 3.9Rs in the east side of Saturn, and the result indicates that the emission intensity was below the detection limit of our observation system, which is less than 2.4[R] in 3-σ. But there is the possibility to improve this limit about three times better. Since the past study obtained in 2009 reported that the emission of [OI]630.0[nm] was 4.0±2.0[R]. We would be able to discuss the time variation of the [OI]630.0nm emission. One of the possible cause of variation is the difference of observation geometry. Saturn’s Ring-Opening Angle(ROA) observed from the earth vary every 15 years. Against ROA is 4.5[deg.](nearly horizontal) in 2009, ROA during our observation period is 22.4[deg.]. So the number of atomic oxygen along the line of sight and the apparent spatial distribution of Enceladus torus were changed during the period. We also have to consider the variability of solar EUV flux, the activity of Enceladus plume and so on as the cause of this variation. In this presentation, I will discuss these causes by comparison with condition of past study.

Keywords: Saturn's inner magnetosphere, Enceladus, groundbased-observation
Test-particle simulation of elastic collisions between magnetospheric 500eV-50keV electrons and neutral H₂O molecules originated from Enceladus

*Hiroyasu Tadokoro¹, Yuto Katoh²

¹Musashino University, ²Tohoku University

Water group neutrals (H₂O, OH, and O) in Saturn’s inner magnetosphere play the dominant role in loss of energetic electrons and ions because of abundance of the neutrals [e.g., Paranicas et al., 2007; Sittler et al., 2008]. The observations of injected plasmas in the inner magnetosphere suggest that these particles do not survive very long time due to the neutral cloud originated from Enceladus [e.g., Paranicas et al., 2007; 2008]. Thus, the previous studies suggested that the neutral cloud contributes to loss processes of plasma in the inner magnetosphere. However, little has been reported on a quantitative study of the electron loss process due to electron-neutral collisions.

In the present study, we examine the variation of energetic electron pitch angle distribution at the magnetic equator and loss rate of precipitated electrons into Saturn’s atmosphere through pitch angle scattering due to elastic collisions with neutral H₂O along Saturn’s dipole magnetic field line around Enceladus. We conduct one dimensional test-particle simulation for monoenergetic electrons along Saturn’s dipole magnetic field line around Enceladus when the co-rotating electron flux tube passes the dense H₂O region in the vicinity of Enceladus (~6.4 minutes). The initial electron pitch angle distribution is assumed to be isotropic.

Tadokoro et al., [2014] examined the variation of 1keV electron pitch angle distribution due to elastic collisions with the dense region of H₂O originated from Enceladus. The examination of elastic collisions with other electron energy is required to understand the electron loss process due to elastic collision. We show the loss rates through pitch angle scattering of electrons with 500 eV -50keV.

Keywords: Enceladus, Saturn, electron-neutral collision