Volcanic activity of Mt Kusatsu-Shirane suggested by the variations in fumarolic gas composition and crater lake water chemistry

*Takeshi Ohba¹, Muga Yaguchi¹, Soichiro Kumehara¹, Akihiko Terada²

1. Department of chemistry, School of Science, Tokai University, 2. Volcanic Fluid Research Center, Tokyo Inst. Tech.

Introduction
In the early of 2014, a swarm of volcanic earthquake has started at Mt Kusatsu-Shirane (Japan Meteorological Agency, JMA, 2015). The daily number of earthquake reached to 149 as maximum on 24th July 2014, followed by a sharp decrease until September of 2014. JMA also detected a change of geomagnetic force induced by the de-magnetization of crust beneath the summit crater on the mountain. We carried out a geochemical observation at the geothermal area and the crater lake.

Results and Discussions
After the swarm of volcanic earthquake on July, the concentration of some chemical components in the lake water of Yugama crater increased, for example, Cl⁻ and H⁺ concentration increased, respectively, 81 and 67%, in Oct 2015 relative to Aug 2014, suggesting the input of HCl. A similar change has been observed in 1990 at the same crater lake. The change is consistent to the invasion of ground water into the solidifying magma as proposed by Ohba et al (2008). The Cl in the solidifying magma could be extracted to fluid as HCl under the super critical condition of H₂O (Giggenbach, 1996).

The CO₂/H₂O ratio of fumarolic gases at the geothermal area on the mountain was 0.044 in July 2014, which decreased to 0.021 in Oct 2015. One possible explanation to the change of CO₂/H₂O ratio is the change of degassing pressure of magma. Even if the H₂O and CO₂ content in magma is constant, the pressure of degassing affects the CO₂/H₂O ratio of fluid degassed from magma. Due to the low solubility of CO₂ relative to H₂O, the high degassing pressure increases the fluid CO₂/H₂O ratio. The magma of Mt Kusatsu-Shirane might be pressurized by the sealing zone (Fournier, 1999) until the early of 2014. If the sealing zone breaks, the CO₂ enriched fluid can be liberated. The swarm of earthquakes is generated by the CO₂ enriched magmatic fluid injected to the shallow hydrothermal system beneath the crater lake. The HCl enriched fluid arrived at the lake with slight delay after the injection of CO₂ enriched fluid.

Keywords: Mt Kusatsu-Shirane, Hydrothermal system, Crater lake
Hydrothermal system beneath the Jigokudani valley, Tateyama volcano

*Kaori Seki1, Wataru Kanda2, Toshiya Tanbo1, Takeshi Ohba4, Yasuo Ogawa2, Shinichi Takakura5, Kenji Nogami2, Masashi Ushioda1, Atsushi Suzuki1, Zenshiro Saito1, Yasuo Matsunaga1

The mechanism of phreatic eruption has not been well understood yet, although we observed phreatic eruptions many times. Phreatic eruption is known to occur in the hydrothermal system developed within a volcanic edifice because the ejecta of phreatic eruptions often contain the hydrothermally altered minerals originated from the hydrothermal system. Therefore, an understanding of the hydrothermal system is essential to clarify the mechanism of phreatic eruption.

The Jigokudani valley, Tateyama volcano located in the Hida Mountains, has an active solfatara field, and was formed by repeated phreatic eruptions some 40,000 years ago. Recently the Jigokudani valley showed the increased volcanic activity, for example, a sulfur outflow and temporal changes in the composition of fumarolic gases. These situations make us expect the presence of a well-developed hydrothermal system which is in preliminary stage of a phreatic eruption.

The objective of this study is to reveal the hydrothermal system beneath the Jigokudani valley by resistivity exploration and hot spring water analysis. In general, hydrothermal fluids or hydrothermally altered minerals are electrically conductive, whereas gases or rocks are resistive. Therefore, a resistivity imaging by using an audio-frequency magnetotelluric (AMT) method is suitable for structural investigation of the hydrothermal system. We estimated where the hydrothermal system developed by AMT survey. In addition, we discussed what has happened in the hydrothermal system by hot spring water analysis. We compared the inferred resistivity structure with the results of hot spring water analysis, which enabled us to estimate more realistic hydrothermal system.

The 3D resistivity structure showed that the Jigokudani valley has a cap structure that is composed of upper hydrothermally altered layer (called cap rock), which shows electrically conductive and rock) and hydrothermally low-permeable, and lower gas reservoir which shows relatively high resistivity. A highly conductive layer is found in a depth of around 500 m and it seems to extend eastward as the depth becomes large. These features were interpreted as the hydrothermally altered pyroclastic flow deposit and a fluid path from the deep magma, respectively.

We measured an electrical conductivity, temperature and pH of hot spring water on the spot. The ion concentration and isotope ratio of hot spring water samples were analyzed at 27 locations. The hot spring water in the Jigokudani valley was classified into three types based on Cl⁻/SO₄²⁻ concentration ratio. Considering both the chemical composition and the isotope ratio, three types of hot spring water were derived from condensation of volcanic gases, a mixing of meteoric water and vapor phase separated at a shallow depth and the surface water supplied with volcanic gases consisting of mainly H₂S.

An integrated view of the resistivity structure and geochemical analysis suggests that the hydrothermal system develops in the depth to 500 m and a common parental fluid of all hot springs is there. In addition, a gas reservoir estimated from the resistivity survey corresponds to the vapor phase inferred from the geochemical analysis. The concentration of Cl⁻ in the hot spring water derived from the vapor phase is a measure of the temperature condition beneath the cap rock, which implies that the monitoring of Cl⁻ could be useful to know the physical state of the cap rock.
structure.

Keywords: hydrothermal system, phreatic eruption, AMT, hot spring water analysis, cap structure
The effect of the change of geothermal system for the scaling on surface facilities

*Norio Yanagisawa

1.Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology

Geothermal usage such as geothermal power generation, hot spring, space heating based on the volcanic hydrothermal activity is progressing in worldwide. In using geothermal energy, the scale precipitation from fluid composition on surface facilities such as pipeline, heat exchanger become serious problem to maintain the system. Therefore it is necessary to predict the kind and precipitation rate of the scale in usage temperature region.

And during long term, the situation of scaling change with geochemical composition. For example, the Kakkonda geothermal area, Iwate prefecture, north-eastern of Japan, there is 80MW geothermal power plant using high temperature fluid from the reservoir at the boundary between Quaternary Kakkonda granite and Pre-Tertiary formations about 3km depth. And metal sulfide minerals deposited at production wellhead and pipeline from fluid. From one of production well, in early stage, the fluid pH is about 4. At this well, scale precipitated including amorphous silica, chalcocite (Cu$_2$S), bornite (Cu$_5$FeS$_4$), loellingite (FeAs$_2$) and native antimony (Sb). On progress of production the fluids from deep reservoir suffered by the fluid of shallow reservoir and meteoritic water. The pH change to about 6 and SiO$_2$ decreased and the scale changed to tetrahedrite (Cu$_{10}$[Fe,Zn]$_2$[As,Sb]$_4$S$_{13}$) and sulfur increased.

And in the case of two-year circulation test in the Hijiori EGS system in Yamagata Prefecture, Japan, amorphous silica and calcium carbonate scale tended to precipitate in the flow line, with the ratio of silica and calcium carbonate depending on fluid temperature and chemical composition. In the case of well HDR-2, with reservoir temperature decreasing, scale changed from amorphous silica to calciumu carbonate. The scale change was controlled the dissolution and precipitation of anhydrite in reservoir. At reservoir has high temperature, anhydrite precipitated in reservoir but after cooling reservoir, the high Ca fluid flow up surface facilie and cause to precipitae calcium carbonate.

Keywords: Geothermal energy, scale, geochemistry of fluid
Numerical model of temporal changes in magnetic total field and ground deformation due to hydrothermal system in volcanoes (1). - A case study on Tokachi-dake volcano, Japan -

*Ryo Tanaka¹, Takeshi Hashimoto¹, Tsuneo Ishido², Nobuo Matsushima³

1.Hokkaido University, 2.AIST

Localized temporal changes in the magnetic total field and ground deformation are often observed at volcanoes that have hydrothermal system within. At Tokachi-dake volcano, one of such volcanoes in central Hokkaido, Japan, continuous magnetic field changes accompanying ground inflation at a shallow depth have been observed. At this volcano, small phreatic explosions took place commonly among major magmatic/phreatomagmatic eruptions in recorded history (JMA, 2013). Repeated magnetic total field surveys since 2008 revealed demagnetization beneath 62-2 crater between 2008 and 2009 (Hashimoto et al., 2010). Besides, the baseline changes by GPS suggested a localized inflation beneath the crater after 2007 (JMA, 2015). Assuming the thermomagnetic effect, Hashimoto et al. (2010) proposed a possible mechanism for such changes. They suspected that steam ascending along the conduit experienced phase change at a shallow depth, releasing latent heat and flowing back as liquid to form a hydrothermal reservoir. They also suggested that increase in heat supply from depth is not essential for the demagnetization in case that heat discharge rate from the crater has been reduced for some reasons. In this study, we verify such a conceptual model by using a numerical simulation of hydrothermal system.

In general, phreatic explosions need substantial amount of water, cap-rock structure that confines pressure, heat supply and increase in pressure for a hydrothermal reservoir to flush through an abrupt phase change. However, it remains an open question whether such structure and processes bring about observable magnetic changes and/or ground deformation preceding to a phreatic eruption. We addressed the following working hypothesis to model Tokachi-dake as a case study. (1) There is a cap-rock structure with a narrow crack below 62-2 crater. (2) Gases through the crack are discharged as plumes from the crater. (3) Decreasing permeability of the crack causes increase in temperature and pressure around the cap-rock structure. We tried to examine the hypothesis using the numerical code “STAR” with the equation-of-state “HOTH2O” (Pritchett, 1995). It enabled us to calculate the heat and mass flow rate of H₂O (gas, liquid and two-phase) in porous media. The calculation region was set as approximately the cross-section passing the summit of Tokachi-dake, 62-2 crater and hot spring located on halfway up the mountain. Firstly, we estimated the background permeability of rock constituting the volcano, which gives a plausible water table. As boundary conditions, constant temperature and pressure conditions were applied to the ground surface and downstream vertical boundary, thermally-insulating and impermeable conditions were applied to the bottom and upstream vertical boundaries. A constant rate of precipitation was injected from the ground surface. A constant heat flow was supplied from the bottom. Subsequently, we reproduced the fumarolic discharge from the crater and the hot spring located in the middle of the slope by providing thermal water from the bottom just beneath the crater. We also introduced a high permeability column as a vertical conduit connected from the volcanic input at the bottom to the crater, as well as a horizontal channel connected to the hot spring. In addition, the low permeability cap-rock with a narrow crack was introduced below the crater. Finally, we changed the crack permeability to observe changes in temperature and pressure of the system. We confirmed that the decrease of the crack permeability caused the increase in temperature and pressure around the cap-rock structure. These results suggested that the working hypothesis was at least self-consistent. In the next step, we will quantitatively investigate the system's responses by comparing the changes in temperature and pressure beneath the crater from the numerical simulation.
to the observed temporal change in the magnetic total field and ground deformation.

Keywords: numerical simulation, hydrothermal system, phreatic explosion, magnetic total field, ground deformation
Mass budgets of hydrothermal water beneath hot crater lakes at Kusatsu-Shirane volcano evaluated by ground deformation and changes in thermal activities

*Akihiko Terada1, Yuri Sakamoto1, Wataru Kanda1, Yasuo Ogawa1

1.Volcanic Fluid Research Center, Tokyo Institute of Technology

Kusatsu-Shirane volcano is one of the most active volcanoes in Japan in terms of persistent heat-release of approximately 150 MW. Mt. Shirane which is one of the pyroclastic cone contains a hot crater lake, locally referred to as Yugama, showing interesting variations of water temperature and chemical concentrations. We detected intense earthquake swarms located at shallow depth around the Shirane pyroclastic cone between March and August 2014. The seismic activity was accompanied by a ground deformation, increase in water temperature of Yugama crater lake, changes in geomagnetic field and chemical concentration of volcanic gas emitting around the cone. Volcanic Fluid Research Center, Tokyo Institute of Technology have deployed three continuous bore-hole type tilt meters, enabling evaluation of changes in volume at shallow depth of the cone. In addition to them, we have monitored thermal activities on the cone. Temperatures of Yugama crater lake have been continuously recorded at an interval of 1 minute. Repeated aerial infrared surveys observe changes in ground surface temperatures around the cone. Using these data we evaluate changes in mass-budgets of hydrothermal water which cause earthquake swarms in 2014. Records of tilt meters indicate that gradual increase in pressure occurred at shallow depth of the cone. Applying the Mogi model we find the inflation source at a depth of only 500 meters from the bottom of Yugama crater lake. A volume change of the inflation source during the period from March 2014 to November 2015 is estimated to be 110,000 cubic meters.

To evaluate changes in thermal activities on Kusatsu-Shirane volcano, repeated aerial infrared survey were carried out between 2012 and 2015. The observation of 2014 and 2015 were done in the nighttime because even slight changes in ground surface temperature can be detected. Comparing IR records obtained in 2015 and that in 2015, surface temperatures of steaming ground located at northern flank of the cone increased significantly, indicating increases in volcanic gas flux. Water temperature of Yugama crater lake rose several degree Celsius from May 2015.

We evaluate evaporation mass by use of atmospheric conditions obtained at the cone, water evaporation rate in 2014 is estimated approximately to be 5 kg/s, which is 2.5 times higher than that of the value in 2012. Rapid decreases in water level were detected by photographs of bars installed near the shore of Yugama crater lake. There results suggest increases in enthalpy of fluid emitting from the lake bottom have occurred since May 2014. We believe that increases in flux of hydrothermal fluid from depth have been maintained although the inflation detected by tilt meters has almost stopped since November 2015.

Keywords: ground deformation, mass budget, tilt meter, hot crater lake, fumarole, Kusatsu-Shirane volcano
Physical structure in pillars of granite porphyry surrounded by columnar joints

*Yasuto Hirata¹, Masahiro Chigira²

1.Graduate School of Science, Kyoto University, 2.Disaster Prevention Research Institute, Kyoto University

Columnar joints are developed in granite porphyry of the Miocene Kumano Acidic Rocks in the Kii peninsula, Japan. We conducted a hammer rebound test on polygonal surfaces normal to the columnar joint axis, measured physical properties (bulk density, porosity, P-wave velocities and X-CT value) and analyzed mineralogy. We found that those columns have a concentric structure around the longitudinal axis of a column. (1) The central portion of a column has porosities 1% higher than those of the other portions, while the margin of the column has more number of large pores. (2) The two parts have lower rebound value and slower P-wave velocity in the direction of the columnar axis than the intermediate part does. P-wave velocity was the fastest in that direction. (3) The ratio of smectite and chlorite was larger near the margin than the other portions. These results suggest that the structure shown by the physical properties in a column of granite porphyry is related to vesiculation of melt and also affected by following hydrothermal alternation.

Keywords: columnar joint, hydrothermal alteration, internal structure