スヴァールバル諸島ニーオルスンにおける大気中CO₂濃度および炭素同位体比の時間変動 Temporal variations of the atmospheric CO₂ concentration and d¹³C at Ny-Ålesund, Svalbard

*後藤 大輔¹、森本 真司²、石戸谷 重之³、青木 周司²、中澤 高清²、弓場 彬江¹
*Daisuke Goto¹, Shinji Morimoto², Shigeyuki Ishidoya³, Shuji Aoki², Takakiyo Nakazawa², Akie Yuba¹

1.国立極地研究所、2.東北大学、3.産業技術総合研究所

1.National Institute of Polar Research (NIPR), 2.Tohoku University, 3.National Institute of Advanced Industrial Science and Technology

Long-term measurements of the atmospheric CO_2 concentration and its carbon isotope ratio ($\mathrm{d}^{13}\mathrm{C}$) have been used for partitioning CO_2 sinks into the terrestrial biosphere and the ocean. However, the CO_2 sinks estimated from $\mathrm{d}^{13}\mathrm{C}$ suffer with uncertainties in isotopic disequilibrium flux between the atmosphere and the ocean and between the atmosphere and the terrestrial biosphere (so-called isoflux). For a better understanding of the global carbon cycle, we have been carrying out the systematic observation of the atmospheric CO_2 concentration and $\mathrm{d}^{13}\mathrm{C}$ at Ny-Ålesund (78.93°N, 11.83° E), Svalbard since 1991 by weekly air sampling with subsequent analysis in NIPR. Here, we will present the observational results of CO_2 concentration and $\mathrm{d}^{13}\mathrm{C}$ for 1991–2013 and 1996–2013, respectively. The $\mathrm{d}^{13}\mathrm{C}$ data before 1996 were removed from our analysis due to experimental and sample quality problems (Morimoto et al., 2001).

The CO_2 concentrations show a clear seasonal cycle with peak-to-peak amplitude of about 17 ppmv, which reaches the maxima in late April to early May and the minima in late August, superimposed on a secular increase with an average rate of 2.0 ppmv/yr for the period of 1996–2013. On the other hand, the $\mathrm{d}^{13}\mathrm{C}$ decreases secularly at an average rate of -0.018 %/yr, and varies seasonally in opposite phase with the CO_2 concentration. We have also maintained atmospheric $\mathrm{d}(\mathrm{O}_2/\mathrm{N}_2)$ measurements at Ny-Ålesund since 2001 (Ishidoya et al., 2012). Using the atmospheric $\mathrm{d}(\mathrm{O}_2/\mathrm{N}_2)$ and CO_2 concentration records, the terrestrial and oceanic CO_2 sinks are estimated to be 1.7 ± 0.8 GtC/yr and 2.2 ± 0.7 GtC/yr, respectively, for the 13-year period (2001–2013). Using these values of CO_2 sinks and the $\mathrm{d}^{13}\mathrm{C}$ record, the average isofulx for the period of 2001–2013 is estimated to be 99 \pm 28 Gt %/yr.

References

Ishidoya et al. (2012) Oceanic and terrestrial biospheric CO_2 uptake estimated from atmospheric potential oxygen observed at Ny-Ålesund, Svalbard and Syowa, Antarctica. *Tellus B*, 64, 18924, http://dx.doi.org/10.3402/tellusb.v64i0.18924.

Morimoto et al. (2001) Temporal variations of atmospheric CO_2 concentration and carbon isotope ratio in Ny-Alesund, Svalbard, Mem. Natl Inst. Polar Res., Spec. Issue, 54, 71–79.

キーワード:二酸化炭素、炭素同位体比、酸素/窒素比

Keywords: atmospheric CO2, carbon isotope ratio, O2/N2 ratio