Global Survey of Exposure Areas of Volcanic Glass-Rich Sites on the Moon based on Hyperspectral Remote Sensing

\*Satoru Yamamoto<sup>1</sup>, Ryosuke Nakamura<sup>2</sup>, Tsuneo Matsunaga<sup>1</sup>, Yoshiko Ogawa<sup>3</sup>, Yoshiaki Ishihara<sup>4</sup>, Tomokatsu Morota<sup>5</sup>, Naru Hirata<sup>3</sup>, Makiko Ohtake<sup>4</sup>, Takahiro Hiroi<sup>6</sup>, Yasuhiro Yokota<sup>7</sup>, Junichi Haruyama<sup>4</sup>

1.NIES, 2.AIST, 3.Univ. of Aizu, 4.JAXA, 5.Nagoya Univ., 6.Brown Univ., 7.TPSG

Spectral Profiler (SP) onboard SELENE/Kaguya has obtained continuous spectral reflectance data (hyperspectral data) for about 70 million points on the Moon in the visible and near-infrared wavelength ranges. Using a data ming approach with all the SP data, global distributions of large area sites with exposed end-member of various lunar major minerals have been revealed: olivine-rich sites, purest anorthosite sites, high Ca pyroxene-rich sites, low Ca pyroxene-rich sites, and spinel-rich sites. In addition to these sites, it is expected that there are exposure sites of quenched glasses from volcanic eruptions on the lunar surface. Although several remote-sensing observations for the volcanic glasses on the Moon have been reported, the global distribution of the glass-rich sites on the global distribution of the glass-rich sites on the Moon. From the global distribution data, we will discuss the compositional variation of the lunar mantle and/or the distribution of the amount of volatiles in the mantle.

Keywords: remote-sensing, hyperspectral, Moon, Kaguya/SELENE