Physical properties of fore-arc basalt and boninite recovered by IODP EXP352 and its significance for the seismic velocity structure in the oceanic crust

*Katsuyoshi Michibayashi¹, Mutsumi Honda², Yuzuru Yamamoto³, Nana Kamiya⁴, Tetsuya Sakuyama⁵, Tohru Watanabe⁶

1.Institute of Geosciences, Shizuoka University, 2.Graduate School of Integrated Science and Technology, Shizuoka University, 3.Department of Mathematical Science and Advanced Technology, JAMSTEC, 4.Graduate School of Integrated Sciences, Nihon University, 5.Faculty of Science, Osaka City University, 6.Gradudate School of Science and Engineering, University of Toyama

Physical properties of the cores recovered by IODP EXP352 were characterized through a set of measurements on whole core sections and discrete samples. Gamma ray attenuation density (GRA), magnetic susceptibility (MS) and P-wave velocity (PWL) of the cores were obtained using the Whole-Round Multisensor Logger (WRMSL). Natural gamma radiation (NGR) was measured by the Natural Gamma Radiation Logger (NGRL). Point magnetic susceptibility (PMS), reflectance spectroscopy and colorimetry (RCS) data were acquired using the SHMSL. Thermal conductivity (TCON) and moisture and density (MAD) were obtained on sections and discrete samples, respectively. All raw data were subsequently "filtered" to remove spurious points that correspond to empty intervals in the liner or broken pieces. We have mainly studied the relationships among P-wave velocity, density, prosity and magnetic susceptibility. We show that the physical properties are useful dataset for the interpretation of the layer 2 (i.e. volcanic rocks) in the seismic velocity structure of the oceanic crust.

Keywords: IODP EXP352, Physical property