Challenges in large-eddy simulation of stratocumulus clouds

*Georgios Matheou1, Daniel Chung2, Joao Teixeira1

1. Jet Propulsion Laboratory, California Institute of Technology, 2. University of Melbourne

The representation of low clouds in global circulation models is one of the largest sources of uncertainty in climate projections. The projection sensitivity stems from the large contribution of low-cloud shortwave reflectivity in the planetary energy balance, particularly of stratocumulus (Sc) cloud decks that form over the ocean. The lack of physical understanding of the factors controlling Sc cloudiness leads to poor prediction skill. Typically, large-eddy simulations (LES) are used to gain insight into boundary layer physics and to inform the development and evaluation of coarse-grained parameterizations used in weather and climate models. However, LES of Sc clouds has been challenging. The discussion focuses on physics-based modeling of the DYCOMS II RF01 observations. An LES model with an explicit turbulence parameterization, the buoyancy adjusted stretched vortex model, and a low numerical dissipation advection scheme is used. To investigate the effect of model error, simulations are carried out with variable grid resolution and physical processes, e.g., with and without radiation. Two main sources of model error are identified: (a) under-prediction of the amount of cloud liquid because of small (< 5%) errors in temperature and humidity in the cloud layer, and (b) a feedback between cloud-top radiative cooling and vertical turbulent fluxes. The sharp inversion does not lead to the degradation of model performance, with the exception of cloud liquid. Even though cloud-top radiative cooling is not significant in driving the turbulence in the boundary layer in the present case, it creates difficulties in the accurate prediction of the turbulent fluxes, which show significant sensitivity to grid resolution. Turbulence spectra are also discussed.

Keywords: Stratocumulus clouds, Large-eddy simulation, Model error, Grid convergence
Effects of 3D Thermal Radiation on the Development of Shallow Cumulus Clouds: Parameterization and LES Application

*Carolin Klinger1,2, Bernhard Mayer1, Fabian Jakub1, Tobias Zinner1, Graham Feingold2, Takanobu Yamaguchi2

1. Ludwig Maximilians University of Munich, 2. NOAA/ESRL, Boulder, CO, United States

The development of clouds is highly influenced by radiative effects. In the first place, solar radiation heats the Earth’s surface, thus causing updrafts of warm and moist air, which, while rising cools again and eventually forms a cloud. From the moment on that a cloud exists, radiation interacts with clouds and clouds interact with radiation. Clouds cause shadows at the surface, which in turn affect cloud formation by reducing solar insolation and thus forming updrafts. At the same time, solar radiation is absorbed by the clouds, causing heating at the illuminated cloud sides. Emission and absorption of thermal radiation lead to cooling at the cloud top and clouds sides and to modest warming at the cloud bottom. While the average cooling rate under cloudless sky conditions is only -1 to -2 K/d, heating rates can become orders of magnitude larger at the interface between cloud and air. The calculation of these heating and cooling rates of up to a few 100 K/d is a three-dimensional problem.

Although these 3D radiative effects are known and can be calculated with accurate radiative transfer models, their representation in cloud resolving models remains poor. With increasing resolution of today’s cloud resolving models, these 3D effects become more and more important. Due to the high computational costs of accurate 3D radiative transfer models, 3D effects have been neglected in cloud model application. The so far used plane-parallel 1D approximations omit horizontal transport of radiation and thus neglect the cloud side heating and the shift of the cloud shadow (according to the solar zenith angle) in the solar spectral range, as well as cloud side cooling in the thermal spectral range. Recent development of fast 3D radiative transfer parameterizations allows now for the first time to account for the 3D effects and for systematical studies of the development of cloud fields under this more appropriate treatment of radiation.

In this talk, the focus will be on the effects of 3D thermal radiation on cloud development. The ‘Neighboring Column Approximation’ (NCA), a fast approach to account for 3D thermal heating rates in cloud resolving simulations will be introduced. The NCA can be efficiently parallelized since it only considers exchange of radiation with the neighboring column which turns out to be a good approximation. Computational costs of the NCA are a factor 1.5 –2 compared to a 1D radiation approximation. Results of the application of the NCA in cloud resolving models will be shown. A comparison of the results of the application of 1D and 3D thermal radiative effects shallow cumulus cloud fields and possible differences in cloud development both in terms of cloud dynamics and cloud microphysics will be outlined.

Keywords: 3D Thermal Radiation, Cloud Development, LES

©2017. Japan Geoscience Union. All Right Reserved. - AAS01-02 -
3D CLOUD, a flexible three-dimensional cloud generator for radiative transfer

*Frédéric SZCZAP¹, Yahya GOUR¹

¹. Laboratoire de Météorologie Physique

Determining the significance of the tridimensional (3D) inhomogeneity of clouds for climate and remote sensing applications requires the measurement and the simulation of the full range of actual cloud structure. The difficulty is to generate cloud property fields that are statistically representative of cloud fields in nature.

Cloud fields generated by dynamic cloud models, such as the large-eddy simulation model (LES), are very attractive, as they contain the state of the art of physical processes. Nevertheless, they are still very expensive to run in a 3-D domain. Stochastic models have the capability to simulate quickly realistic 2D and 3D cloud structures with just a few parameters. These stochastic models are often based on fractal or Fourier framework. The scale invariant properties observed in real clouds can be controlled. The power spectra of the logarithm of their optical properties typically exhibits a spectral slope of around −5/3 from small scale (a few meters) to the “integral scale” or the outer scale (few tenths of a kilometer to one-hundred kilometers), where the spectrum becomes flat (decorrelation occurs). The disadvantage of such models arises from the fact that effects of meteorological processes are not always considered and dominant scales of organization related to turbulent eddy due, for example, to wind shear, convection, and entrainment are not directly modelled. The aim of the 3D CLOUD (Szczap et al., 2014) is to reconcile these two approaches.

3D CLOUD is designed to generate cloud fields that share some statistical properties observed in real clouds such as the inhomogeneity parameter (standard deviation normalized by the mean of the studied quantity), the Fourier spectral slope (close to −5/3 between the smallest scale of the simulation to the outer scale). Firstly, 3D CLOUD assimilates meteorological profiles (humidity, pressure, temperature and wind velocity). The cloud coverage C, defined by the user, can also be assimilated. 3D CLOUD solves drastically simplified basic atmospheric equations, in order to simulate 3-D cloud structures of liquid or ice water content. Secondly, the Fourier filtering method is used to constrain independently the intensity of inhomogeneity parameter, of spectral slope, of outer scale and of mean of optical depth. Distribution of optical depth is assumed to be gamma.

3D CLOUD model was developed to run on a personal computer under Matlab environment with the Matlab statistics toolbox. 3D CLOUD is thirty times faster than the BRAMS model. We are developing 3D CLOUD V2 code, an enhanced version of the 3D CLOUD model, where the wavelet framework is used instead of the Fourier framework in the second step. It is well known that wavelets are localized in both space and frequency whereas the standard Fourier transform is localized only in frequency. We show that new iterative wavelet method operating during the second step of 3D CLOUD_v2 algorithm can better control the spectral slope value while keeping spatially the cloud structure simulated during the second step of 3D CLOUD model.

Keywords: 3D CLOUD, radiative transfer, cloud generator
Volume rendering of stratocumulus, cumulus and cirrus fields generated by 3D CLOUD
A two-dimensional demonstration of adjoint methods for atmospheric remote sensing

*William G. K. Martin1, Otto P. Hasekamp1

1. Netherlands Institute for Space Research

Improved satellite observations of aerosols near clouds are needed to understand cloud-aerosol interactions. There is mounting evidence that we need to model three-dimensional (3D) effects to retrieve aerosols and clouds together in certain key regions, such as in broken cloud fields and near cloud edges. In previous work, we derived the adjoint method as a computationally efficient path to three-dimensional (3D) retrievals. This talk will show a synthetic retrieval study, in which we use a new two-dimensional (2D) radiative transfer solver (FSDOM) to retrieve cloud extinction and surface albedo from multi-angle reflectance measurements.

We generate multi-angle measurements with noise for several synthetic cloud fields and then retrieve the cloud extinction field as a 2D function of the horizontal and vertical coordinates. Our retrieval algorithm adjusts the cloud extinction field and surface albedo to minimize the measurement misfit function with a gradient-based, quasi-Newton approach. At each step we compute the value of the misfit function and its gradient with two calls to the solver FSDOM. First we solve the forward problem to compute the residual misfit with measurements, and second we solve the adjoint problem to compute the gradient of the misfit function with respect to all unknowns. In this way, the adjoint method allows us to make each adjustment to atmosphere and surface properties with only two radiative transfer calculations, regardless of the number of measurements and unknowns.

Our synthetic retrievals verify that adjoint methods are scalable to retrieval problems with many measurements and unknowns. In cases with moderately thick clouds, we can retrieve the vertically-integrated optical depth as a function of the horizontal coordinate. It is also possible to retrieve the vertical profile, i.e. the full 2D cloud field, for clouds that are separated by clear regions. The retrievals of the vertical profile improve for smaller cloud fractions. This leads to the interesting conclusion that cloud edges actually increase the amount of information that is available for the vertical profile. However, to exploit this information one must retrieve the horizontally heterogeneous cloud properties with a 2D (or 3D) model.

These synthetic retrievals show that adjoint methods can efficiently compute the gradient of the misfit function, and encourage our ongoing efforts to augment the existing 3D radiative transfer code SHDOM with derivative calculations based on the adjoint method.

Keywords: Adjoint methods, Inverse problems, Remote sensing, Cloud retrievals
Assessment of 3D cloud radiative transfer effects using observed satellite data

*Megumi Okata1, Teruyuki Nakajima2, Kentarho Suzuki1, Toshiro Inoue1, Takashi Nakajima3, Hajime Okamoto4

1. University of Tokyo, Atmosphere and Ocean Research Institute (AORI), 2. Earth Observation Research Center (EORC), Japan Aerospace Exploration Agency (JAXA), 3. Research and Information Center, Tokai University, 4. Research Institute for Applied Mechanics, Kyushu University

This study investigates SW and LW broadband radiative fluxes in the 3D cloud-laden atmospheres using a 3D radiative transfer (RT) model, MCstar, and satellite-observed cloud data. The 3D extinction coefficient fields are constructed by a newly devised Minimum cloud Information Deviation Profiling Method (MIDPM) that extrapolates CPR radar profiles at nadir into off-nadir regions within MODIS swath based on collocated information of MODIS-derived cloud properties and radar reflectivity profiles. The method is applied to low level maritime water clouds off California, for which the 3D radiative transfer simulations are performed.

The radiative fluxes thus simulated are compared to those obtained from CERES as a way to validate the MIDPM-constructed cloud fields and our 3D radiative transfer simulations. The results show that the simulated SW flux agrees with CERES values within 8 - 50 Wm\(^{-2}\). The large bias is found to occur primarily in the case of large cloud fraction field including a number of thin clouds. A possible reason for the bias is likely to arise from the 1D retrieval error for such thin clouds, which tend to be affected by spatial heterogeneity and to overestimate the cloud optical thickness. Given that the uncertainty of instantaneous CERES TOA flux is around 9 Wm\(^{-2}\), the bias of 8-50 Wm\(^{-2}\) suggests that MIDPM captures a key aspect of the real 3D cloud field, though we need a future study of validation with more data in various conditions.

Such 3D-RT simulations also serve to address another objective of this study, i.e. to characterize the “observed” specific 3D-RT effects by the cloud morphology. The 3D-RT effects are characterized by errors of existing 1D approximations to 3D radiation field. The errors are investigated in terms of their dependence on solar zenith angle (SZA) for the satellite-constructed real cloud cases and are classified to three types corresponding to different simple morphologies, i.e. isolated cloud type, upper cloud-roughened type and lower cloud-roughened type. The error characteristics are further interpreted with the effective cloud fraction (\(CF_e\)) profile defined according to average cloud optical thickness and the standard deviation. It is confirmed that the \(CF_e\) profile characteristics are consistent with classification of 3D-RT effect into the three types. Such a classification offers a novel insight into 3D-RT effect in a manner that relates to cloud morphology.

キーワード：3D radiative transfer, cloud radiative effect, observed cloud satellite data
Keywords: 3D radiative transfer, cloud radiative effect, observed cloud satellite data
Application of the deterministic scheme for estimating cloud inhomogeneity effects in a high-resolution numerical model

*Haruma Ishida¹, Yoshifumi Ota¹, Miho Sekiguchi², Yousuke Sato³

1. Meteorological Research Institute, 2. Tokyo University of Marine Science and Technology, 3. RIKEN Advanced Institute for Computational Science

Three-dimensional (3D) radiative transfer effects of spatially inhomogeneous clouds in a very high-resolution numerical simulation are estimated by applying a 3D radiative transfer calculation method that incorporates the deterministic (explicit) scheme. The spatial inhomogeneity of clouds often complicates transport of radiation energy and heating/cooling in the atmosphere, influencing local and global radiation budgets. It is therefore significant to clarify the 3D radiative transfer effects not only for energy budget estimation but also for simulation of the cloud development process. However, there are some problems that hamper the investigation of the 3D radiative transfer effects. One is that the 3D radiative transfer calculation in spatially inhomogeneous clouds usually needs a large resource for computation compared to a plane-parallel approximation. Another is that it is difficult to obtain cloud fields appropriate to estimation of radiative transfer effects, especially in fine spatial scale. Recently, a Large Eddy Simulation (LES) model with a very high-resolution (with the order of 10 m in spatial grid) has been developed, making it possible to provide detailed cloud structure for investigation of cloud physics. In this study, results of the LES model, which deals with development and decay of shallow cumulus and stratocumulus, are used to estimation of the 3D radiative transfer effects. The 3D radiative transfer calculation method applied in this study explicitly solves the 3-D radiative transfer equation by iterative calculation. The 3-D radiative transfer equation is discretized by spherical harmonics expansion and the bidirectional upwind difference scheme for suppression of numerical oscillations. This method consistently satisfies the conservation of radiative energy within both every local grid and a whole domain, and thus is appropriate to calculation of radiation fluxes and their divergence/convergence. This method also has an advantage in calculation for a sequence of time evolution (i.e., the scene at a time is little different from that at the previous time step). Furthermore, this method can treat radiation with strong absorption, such as the infrared regions. For efficient computation, this method utilizes a correlated-k distribution method refined for efficient approximation of the wavelength integration. For a case study, infrared broadband radiation for a time variation of a broken cloud field is calculated, deriving the horizontal radiation transport, which is neglected in the plane-parallel approximation. The calculation result shows not only cloud top cooling but also an additional cooling at the boundaries of clouds and within optically thin clouds, which is caused by the horizontal divergences of infrared radiation. The radiative cooling at lateral boundaries of clouds may reduce infrared radiative heating in clouds as well as cooling at gaps of clouds (i.e., clear sky). The difference between the cooling/heating rates of 1D and 3D sometimes reaches the order of 10 K/day, which should not be ignored in the cloud development and dissipation process. It is suggested that incorporation of 3D radiative transfer into a high-resolution numerical model is helpful for the quantitative estimation of 3D effects.

Keywords: radiative transfer, cloud inhomogeneity effects, high-resolution numerical model, radiative energy flux
Remote Sensing of 3D Cloud Microphysics via Radiative Transfer

*Aviad Levis

1. Technion - Israel Institute of Technology

Recent advances in multi-view high-resolution instruments and computation power enable, in principle, 3D volumetric recovery of clouds. This is in contrast to current retrievals, which rely heavily on plane-parallel models and 1D radiative transfer. Plane-parallel models do not express the true 3D nature of the atmosphere, thus biasing retrievals. We pose and solve an inverse problem of passive atmospheric scatterer 3D tomography. The approach fits a microphysical 3D volumetric model of scatterers to multi-angular/multi-spectral images. The forward model is a numerical 3D radiative transfer solver. Model to data fit is posed as a high-dimensional optimization problem. The optimization is computationally tractable on large scales, thanks to an efficient algorithm, which we describe.

As a test-case, we apply the approach to cumulus clouds. Validation is done using a synthetic large-eddy simulation. A preliminary experimental demonstration is performed on data acquired by the Airborne Multi-angle Spectro-Polarimetric Imager (AirMSPI).

Keywords: 3360 Remote sensing, 6982 Tomography and imaging, 0629 Inverse scattering, 3311 Clouds and aerosols
Retrieval of optical thickness and effective droplet radius of inhomogeneous clouds using a deep neural network

*Hironobu Iwabuchi¹, Rintaro Okamura¹, Sebastian Schmidt²

1. Graduate School of Science, Tohoku University, 2. Department of Atmospheric and Oceanic Sciences, University of Colorado

Estimation of cloud properties such as the cloud optical thickness and effective droplet radius is usually based on the independent pixel approximation (IPA) assuming a plane-parallel, homogeneous cloud for each pixel of a satellite image. Prior studies have pointed out that horizontal and vertical inhomogeneities produce significant errors in the retrieved cloud properties. The observed reflectance at each pixel is influenced by the spatial arrangement of cloud water in adjacent pixels, which necessitates the consideration of the adjacent cloud effects when estimating the cloud properties at a target pixel. We study the feasibility of a multi-spectral, multi-pixel approach to estimate the cloud optical thickness and effective droplet radius using a deep neural network (DNN), which is a kind of machine-learning technique and has capabilities of multi-variable estimation, automatic characterization of data, and non-linear approximation. A Monte Carlo three-dimensional radiative transfer model is used to simulate the reflectances with a resolution of 280 m for large eddy simulation cloud fields in cases of boundary layer clouds. Two retrieval methods are constructed: 1) DNN-2r that correct IPA retrievals using the reflectances (from 3D simulations) at 0.86 and 2.13 μm and 2) DNN-4w that uses the so-called convolution layer and directly retrieve cloud properties from the reflectances at 0.86, 1.64, 2.13 and 3.75 μm. Both DNNs efficiently derive the spatial distribution of cloud properties at about 6×6 pixels all at once from reflectances at multiple pixels. Both DNNs outperform the IPA-based retrieval in estimating cloud optical thickness and effective droplet radius more accurately. The DNN-4w can robustly estimate cloud properties even for optically thick clouds, and the use of a convolution layer in the DNN seems adequate to represent three-dimensional radiative transfer effects.

Keywords: remote sensing, cloud retrieval, deep neural network
Using polarimetry to retrieve the cloud coverage of Earth-like exoplanets

*Loic Rossi¹, Daphne M Stam¹

1. Faculty of Aerospace Engineering, Delft University of Technology

Clouds in atmospheres of exoplanets play a key role in understanding their climate and radiative balance. They can also complicate the detection of chemical species in the atmosphere by flattening the spectra or by creating degeneracies between observables (Kitzmann et al. 2011, Line and Parmentier 2016)

Polarimetry promises to be a powerful tool to detect and study exoplanets (Stam et al. 2004). The polarisation of the light scattered by the atmosphere of those planets contains a lot of information about the vertical structure of the atmosphere and about the composition of the clouds (Karalidi et al. 2012) and has already been very successful in the case of Venus (Rossi et al. 2015, 2016 in prep).

We used radiative transfer models based on the doubling-adding method to simulate the disk-integrated flux and polarization of light scattered by exoplanets with patchy, subsolar and polar water clouds. We show that the degree of polarization of the light scattered by an exoplanet can be used to discriminate between the different types of cloud coverage and to quantify the cloud coverage on the planetary scale. Use of both flux and polarization allows for a resolution of some ambiguities between cloud coverage and cloud top altitudes.

We then propose an observational strategy based on an iterative process using polarization phase curves in the wavelength range 300 to 900 nm that could help retrieve both orbital parameters and cloud coverage with minor ambiguities.

We intend to test this method using GCM outputs to simulate the cloud cover and the resulting flux and polarization of some exoplanets.

Keywords: polarimetry, atmospheres, exoplanets, clouds
Radiative Transfer Modeling to Interpret Photopolarimetric Measurements of Brown Dwarf Emissions

*Suniti Sanghavi1,2

1. Jet Propulsion Laboratory, 2. California Institute of Technology

We present a novel radiative transfer scheme for computing the disc-resolved and disc-integrated polarized infrared emission of an oblate brown dwarf (BD) or planet. Using this capability, we model oblate cloud-bearing brown dwarfs at different orientations relative to the observer.

The dependence of the photo-polarimetric signal on cloud optical thickness and droplet size, stellar oblateness and inclination are examined qualitatively.

Knowledge of the oblateness and the projected inclination of the stellar axis in the viewing plane together allow the determination of the exact orientation in space of the stellar rotation axis, for both uniform and patchy brown dwarfs. Polarization measurements are most sensitive to the stellar limb, thus providing information complementary to photometric measurements which are susceptible to limb darkening. Information content analysis reveals that polarization can contribute significantly to the quality of the retrieval, especially when measurements can be made with high accuracy.

Keywords: Exoplanets, Brown dwarfs, Clouds, Oblateness, Temperature inhomogeneity

\[\frac{b}{a} = 0.7, \quad \theta_{\text{incl}} = 45.0^\circ \]

\[I_{\text{da}} = 7.1430e-04 \]
\[Q_{\text{da}} = 7.8812e-08 \]
\[q_{\text{da}} = 1.1033e-04 \]
\[U_{\text{da}} = 1.5575e-22 \]
\[u_{\text{da}} = 2.1805e-19 \]
A FAST HYBRID (3D/1D) MODEL FOR THERMAL RADIATIVE TRANSFER IN CIRRUS VIA SUCCESSIVE ORDERS OF SCATTERING

*Thomas Fauchez¹, Anthony B Davis², Celine Cornet³, Frederic Szczap⁴, Steven Platnick⁵, Philippe Dubuisson³

1. Universities Space Research Association, GSFC Greenbelt, 2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, 3. Laboratoire d’Optique Atmosphérique, UMR 8518, Université Lille 1, Villeneuve d’Ascq, France, 4. Laboratoire de Météorologie Physique, UMR 6016, Université Blaise Pascal, Clermont Ferrand, France, 5. NASA Goddard Space Flight Center, Greenbelt, MD, USA

Cirrus clouds are relevant components of the Earth’s climate and radiation budget, but their role is still poorly understood. Many satellites are currently dedicated to cloud observation to retrieve their properties. Concerning cirrus clouds, Thermal InfraRed (TIR) retrieval techniques have demonstrated better accuracy than Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels techniques as long as the cirrus is optically thin with small ice crystals. However, current global operational algorithms assume that cloudy pixels are horizontally homogeneous (Plane Parallel and Homogeneous Approximation (PPHA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on ice cloud retrievals needs to be understood and, as far as possible, corrected. To better understand the effects of cloud heterogeneity on TOA thermal radiative quantities and potentially correct cloud parameter retrievals, 3D RT simulations are essential. They allow us to model the impact of cloud heterogeneity on cloud scattering for given microphysical/optical properties, conditional that these properties are realistic. However, full 3D RT calculations are generally very time consuming, particularly in Monte Carlo simulations.

The aim of this paper is to better understand the contribution of the different orders of scattering in the TIR atmospheric window, as has already been done in the solar spectrum. We focus our attention on the contributions of successive orders of scattering inside a heterogeneous cirrus cloud, with different scattering properties, for two of the three channels of the Imaging Infrared Radiometer on CALIPSO at 8.65 μm and 12.05 μm. Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL. Differences between 3D and 1D RT are discussed in terms of contribution of the successive orders of cloud scattering to the total radiance observed at TOA. We present a hybrid model (FATTIRE-C), based on exact 3D direct emission and 1D first scattering order in each homogenized column, followed by an empirical adjustment linearly dependent on the optical thickness to radically accelerate the 3D RT computations. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

Keywords: 3D thermal infrared radiative transfer, Monte Carlo, Cirrus
Spatial-scale Characteristics of Three-dimensional Cloud-resolving Radiation Budget by Monte Carlo Radiative Transfer Simulations

*太田 芳文¹
*Yoshifumi Ota¹

1. 気象庁気象研究所
1. Meteorological Research Institute, Japan Meteorological Agency

Clouds have greenhouse effects that prevent cooling of ground surface and lower atmosphere by absorbing terrestrial infrared radiation, along with cooling effects by blocking the solar radiation. Those effects play an important role in determining the Earth's radiative energy budget which varies regionally and seasonally. Especially, in cloud-resolving scale, complex geometry and inhomogeneity of clouds affect significantly on three dimensional radiative energy budget of the solar and terrestrial radiation. Modeling of three-dimensional radiative processes and its spatial-scale characteristics is key issues for reliable simulations of cloud-resolving system.

In this study, three-dimensional atmospheric radiative transfer model has been developed for the purpose of evaluating the cloud-resolving radiation budget. Monte Carlo method has been employed as a basic scheme because the method is easily applicable to complex three-dimensional system rather than explicit analytical radiative transfer scheme. Multiple-scattering, absorption, and emission effects are taken into account to the radiative transfer process. The gas absorption data optimized with correlated-k distribution method are implemented in order for efficient broadband calculation. In addition, the dependent sampling method enables simultaneous calculations at multi-wavelength, which is suitable to sub-band integrations of the correlated-k distribution data.

The Monte Carlo radiative transfer model was applied to cloud scenes calculated by large eddy simulation model, and cloud-resolving radiative energy budgets were estimated for several different spatial-scales. Performance of the Monte Carlo radiative transfer model and the spatial-scale characteristics of three dimensional radiation effects will be discussed from the point of view of cloud-resolving radiation budget.
Assessments of Cloud Heterogeneity Effects on the POLDER3/PARASOL retrieved cloud parameters

Céline Cornet¹, *Frédéric SZCZAP², Laurent C-Labonnote¹, Fabien Waquet¹, Lucia Deaconu¹, Frédéric Parol¹, Jérôme Riédi¹, François Thieuleux¹

¹. Université Lille, CNRS, UMR 8518 - LOA - Laboratoire d’Optique Atmosphérique, F-59000 Lille, France, 2. Université Blaise Pascal, UMR 6016, Laboratoire de Météorologie Physique, Aubière, France

As recognized in the last IPCC report, clouds are of major importance in the climate budget and in its evolution. Their global and accurate observations are therefore essential. Since 2005 and during 9 years, POLDER3/PARASOL has measured total and polarized multi-angular reflectances of the atmosphere at three wavelengths. In a near future, the Multi-viewing, Multi-channel, Multi-polarisation Imager (3MI) will achieve the same kind of measurements with an extension to the shortwave infrared wavelengths. These measurements allows to retrieve, among others, cloud optical thickness, cloud albedo, effective radius and variance of the size distribution and aerosol above cloud optical thickness. In the operational algorithm, clouds are still assumed, at the observation scale, flat, homogeneous and horizontally infinite. The consequence of this assumption needs to be evaluated.

Using three-dimensional (3D) synthetic cloud and 3D radiative transfer, we simulate realistic POLDER measurements. For bumpy and fractional clouds, we show that both total and polarized radiances are affected by the cloud heterogeneities. For example, the well-known illumination effects for titled solar incidence, lead to larger polarized radiances at small scale (50m). Consequently, the angular signature at POLDER scale (6x7km) used to retrieve some cloud parameters is modified by these illumination but also shadowing effects, that has to be added to the well-known plane-parallel bias due to the subpixel variability.

To assess cloud heterogeneity effects on operational product, we applied the POLDER operational algorithm on the simulated reflectances. The retrieval of cloud optical thickness is greatly affected by cloud heterogeneities. For solar incidence of 60°, the cloud optical thickness can be underestimated up to -70% in backward viewing direction and overestimated up to +40% in the forward direction. Concerning the cloud albedo, the errors are weaker, between -5% for low solar incidence angles and up to about 8% for large incidence angles. The cloud size distribution parameters retrieval that used multi-angular polarized reflectances, is almost not affected by the cloud heterogeneity. That proved to be a great advantage of polarization measurements. The cloud top pressure determining from molecular scattering in the forward direction can be biased up to 120hPa. Concerning the aerosol optical thickness above cloud the results show different pictures depending on the available angular information. When the scattering angle of the available directions range is between 60° and 180°, the retrieved AOT is almost not affected by the cloud heterogeneity. However, with only scattering angles above 120°, the algorithm retrieved significant amount of fictive aerosol.

Keywords: cloud, heterogeneity, Remote Sensing
CIRRUS HORIZONTAL HETEROGENEITY EFFECTS ON CLOUD OPTICAL PROPERTIES RETRIEVED FROM MODIS VNIR TO TIR CHANNELS

Thomas Fauchez1,2, Steven Platnick1, Odran Sourdeval3, Kerry Meyer1,4, Celine Cornet5, Frédéric SZCZAP6

1. NASA Goddard Space Flight Center, Greenbelt, MD, USA, 2. Universities Space Research Association (USRA), Columbia, MD, USA, 3. Institute for Meteorology, Faculty of Physics and Earth Sciences, University of Leipzig, Germany, 4. Goddard Earth Sciences Technology and Research (GESTAR), Universities Space Research Association, Columbia, MD, USA, 5. Laboratoire d'Optique Atmosphérique, UMR 8518, Université Lille 1, Villeneuve d'Ascq, France, 6. Laboratoire de Météorologie Physique, UMR 6016, Université Blaise Pascal, Clermont Ferrand, France

Cirrus are an important part of the Earth radiation budget but an assessment of their role yet remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size (Re) are often retrieved with a combination of Visible/Near Infrared (VNIR) and ShortWave-Infrared (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better sensitivity to thin cirrus. However, current satellite operational products for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel and Homogeneous Approximation (PPHA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on cirrus retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects can be more easily estimated and corrected in the TIR range because they are mainly dominated by the PPA bias, which primarily depends on the COT subpixel heterogeneity. For solar reflectance channels, in addition to the PPHA bias, the IPA can lead to significant retrieval errors if there is large photon transport between cloudy columns in addition to brightening and shadowing effects that are more difficult to quantify.

The effects of cirrus horizontal heterogeneity are here studied on COT and Re retrievals obtained using simulated MODIS reflectances at 0.86 and 2.11 μm and radiances at 8.5, 11.0 and 12.0 μm, for spatial resolutions ranging from 50 m to 10 km. For each spatial resolution, simulated TOA reflectances and radiances are combined for cloud optical property retrievals with a research-level optimal estimation retrieval method (OEM). The impact of horizontal heterogeneity on the retrieved products is assessed for different solar geometries and various combinations of the five channels. Synthetic cirrus cloud fields used as input to the OEM are generated using a cirrus 3D cloud generator (3DCloud) and a 3D radiative transfer code (3DMCPOL).

Keywords: clouds, 3D effects, retrievals, satellite
Cloud inhomogeneity effect and its impact on cloud retrieval using passive satellite instruments

*Chenxi Wang¹, Steven Platnick², Zhibo Zhang³, Kerry Meyer⁴, Thomas Fauchez⁴

1. ESSIC, University of Maryland, College Park, Maryland, USA, 2. NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 3. Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland, USA, 4. Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, Maryland, USA

Cloud optical and microphysical properties, together with cloud-top height, determine cloud radiative effects and impact Earth energy budget. While nature clouds are horizontally and vertically inhomogeneous, most of current retrieval algorithms consider cloud as a homogeneous layer in their forward models. In this study, cloud inhomogeneity effects are investigated in two different ways: (1) cloud sub-pixel inhomogeneity (horizontal inhomogeneous) and (2) vertical inhomogeneity (e.g., cloud microphysical property varies with height). We will show the impact from cloud inhomogeneity effects on current retrieval algorithms relying on observations of passive satellite instruments (e.g., infrared (IR) and/or solar reflectance observations). We also developed retrieval correction method to reduce biases due to cloud inhomogeneity effects.

Keywords: Cloud retrieval, Cloud inhomogeneity
Large Eddy Simulation and 3D Radiative Transfer Modeling in Support of Multi-Angle Remote Sensing of Clouds and Aerosols, With or Without Imaging

*Anthony B Davis¹, Georgios Matheou¹, Feng Xu¹, Claudia Emde², Zheng Qu, Aviad Levis³, Yoav Y Schechner³

Although real clouds and aerosols vary in all three spatial dimensions, operational remote sensing of their inherent physical properties is invariably predicated on one-dimensional (1D) radiative transfer (RT) theory. We therefore always need to worry about the resulting forward signal model error. It needs to be quantified and, if possible, mitigated. Computational 3D RT has been brought to bear on this issue for decades, with 3D cloud models that have evolved from simple shapes such as cuboids and spheroids to deterministic fractal geometries on to stochastic multifractal distributions of scattering particle density that realistically mimic turbulent flows. More recently, computational fluid dynamics have been applied to cloud-scale process modeling with spectacular success, especially using Large-Eddy Simulation (LES) techniques. It was just a matter of time before this LES-based cloud modeling would be combined with 3D RT, on the one hand, to assess the visual verisimilitude of the synthetic clouds and, on the other hand, to apply the whole high-fidelity simulation framework to challenging problems in remote sensing.

We will report on three projects that use the "LES + 3D RT" toolbox at JPL. They cover the two broad categories of 3D RT issues: sub-pixel variability and cross-pixel radiative exchanges. Non-imaging (single-pixel) instruments, such as the Aerosol Polarimetric Sensor (APS) on the (doomed) Glory mission, only has the former problem. Airborne imagers, such as the Multi-angle Spectro-Polarimetric Imager (MSPI) with very high spatial resolution are affected by the latter.

We used LES clouds and a proprietary Monte Carlo 3D RT model to explore the non-linear mixing of aerosol and broken cumulus cloud signals in the APS footprint (~10 km) over a wide range of viewing angles. We used the same LES clouds and an open-source deterministic 3D RT model to demonstrate 3D cloud reconstruction using a new kind of tomography, and then applied it to clouds captured with AirMSPI multi-angle/multi-pixel data. Finally, we retrieve from AirMSPI images of marine stratocumulus the radiative smoothing scale (where pixel cross-talk becomes less significant), and describe a path toward a robust retrieval of optical and geometrical thicknesses.

Keywords: Clouds, Aerosols, Large eddy simulation, Three-dimensional radiative transfer, Inverse problems, Remote sensing
3D RT … and 1D RT

Nadir view
Oblique view

No shadows!
No cloud sides!
Currently, short-term rain/snow forecast is largely based on weather radars that observe rain/snow particles in the air and therefore cannot fully cover the clouds which may cause severe weather. New radars have recently been developed to detect clouds but the construction and maintenance of radars would be expensive. In order to develop low-cost methods to observe clouds, images of clouds captured with digital cameras could be used to locate and make measurements of clouds. Previous studies attempted to calibrate cameras using various objects and landmarks, such as topographic features, locations of airplanes and stars. However, for the practical cloud monitoring, it is important to develop methods to observe clouds without any external calibration but the proper photographic conditions for the task are yet to be carefully examined.

In order to examine the optimum conditions, images of the cloud-like objects, a lump of cotton and a piece of clay, were taken from different angles with digital cameras (Nikon D5500). The images were then processed by the 3D modeling software PhotoScanPro to construct a 3D model with which the location and size of the objects will be calculated. Up to now (15 Feb 2017), several preliminary experiments have been conducted. Using a lump of cotton hung with thin threads, images were captured with different dihedral angle between cloud-camera planes ($\theta = 1^\circ, 2^\circ, 3^\circ...$ as indicated in Fig 1) to examine the viability to construct 3D models (A) and the accuracy of the calculated distance (B) and the surface area (C) of the models. Another experiment was held by capturing all-round photos of a piece of clay to generate a 3D model and examine the accuracy of volume measurements (D). Finally, using the cotton, multiple photos were captured with different positions of light source to evaluate the influence on the resulting models (E).

The results of the experiments are as follows: (A) although it varied depending on the number of photos, there was a maximum angle with which a 3D model could be made. The angle got the bigger the more photos were used. (B) Also, with the larger dihedral angles, the accuracy of the calculated distances improved and (C) the surface areas of the produced 3D models expanded. (D) In the second experiment, the calculated volume of the clay was about 30\% smaller than the actual volume. This is most likely because the shaded bottom side of the clay made the model incomplete and this issue could be solved by changing the exposure of the camera. (E) The final experiment regarding the light source positions gave an outcome that the resulting 3D models were not very different with different positions of the light.

From the results of the experiment, we have found some of the optimum conditions. For further investigation, we will look into other conditions such as the number of cameras, elevation angle of cameras, size of the object taking up each image, and camera exposure to see if they affect the accuracy of resulting 3D models and measurements. We are also planning to take actual photos of clouds and generate 3D models using them in order to evaluate the validity of the preliminary experiments. In the
end, by applying those conditions to the actual photo-capturing situation, consecutive images will repeatedly be captured to construct 3D models, the accumulation of which could help determine criteria for precipitation forecast.

Keywords: Cloud Observation, 3D Modeling, Camera Images, Precipitation Forecast

キーワード：雲観測、3Dモデリング、カメラ画像、降水予測
Keywords: Cloud Observation, 3D Modeling, Camera Images, Precipitation Forecast
Variational Iteration Method for Infrared Radiative Transfer in a Scattering Medium

*Feng Zhang1,2, Yi-Ning Shi2, Jiangnan Li3, Kun Wu2, Hironobu Iwabuchi1

1. Tohoku University, 2. Nanjing University of Information Science and Technology, 3. Canadian Center for Climate Modeling and Analysis, University of Victoria

A new scheme is proposed for using the variational iteration method (VIM) to solve the problem of infrared radiative transfer in a scattering medium. This scheme allows the zeroth-order solution to be identified as the absorption approximation and the scattering effect is included in the first-order iteration. The upward and downward intensities are calculated separately in the VIM, which simplifies the calculation process. By applying the VIM scheme to two single-layer scattering media and a full radiation algorithm with gaseous transmission, it is found that the VIM is generally more accurate than the discrete-ordinates method (DOM), especially for cirrostratus. Computationally, the VIM is slightly faster than the DOM in the two-stream case but more than twice as fast in the four-stream case. In view of its high overall accuracy and computational efficiency, the VIM is well suited to solving infrared radiative transfer in climate models.

Keywords: Variational Iteration Method, Radiative Transfer, Absorption Approximation