Toward synthesis of watershed sciences

*奥田 昇
*Noboru Okuda

I organize this session for synthesis of watershed sciences, through which we aim to understand dynamical processes of interactions between organisms, nutrients and other materials in watersheds from mountain tops to receiving water. The session will be integrating a variety of research disciplines including limnology, pedology, ground water hydrology, sedimentology, coastal oceanography, meteorology, forestry, agriculture, fishery and more. The watershed sciences also challenge us to solve environmental issues emerged in the watersheds through our profound understanding of relations between humanity and nature in social-ecological systems. For instance, on one hand, human land uses alter dynamics of sediments, macro- and micro-nutrients and pollutants in soils and waters on catchment scales, while changing climates may alter the frequency and intensity of natural disaster, sometimes having catastrophic effects on the watershed systems. On the other hand, globalization causes transboundary pollution and biological invasion between watersheds. Such anthropogenic disturbances, in turn, reduce quality and quantity of natural resources in watersheds and coasts and thus deteriorate ecosystem services, posing a risk to sustainable human development. The dogma of watershed sciences may lead us to the solution for sustainable future of watershed systems as the basis of our existence. This session also calls for ideas on new methods for the watershed sciences, such as tracer and molecular technique, modeling and paleontological approaches, laboratory and field experiments, and so on, in order to elucidate biological, chemical and physical mechanisms for shedding light on natural phenomena and their changes over time in complex and dynamic watershed systems. Through this session, we would like to facilitate interdisciplinary collaboration among participants to create new knowledge on watershed sciences.

キーワード：学際科学、社会-生態システム、課題解決型科学、持続可能性、流域
Keywords: Interdisciplinary science, Social-ecological system, Solution-oriented science, Sustainability, Watershed
Nutrient Dynamics in Watersheds

Adina Paytan

1. University of California Santa Cruz

Watersheds and the processes that take place within them are complex and important modulators of nutrients that ultimately drain into receiving water bodies like streams, rivers, lakes, wetlands and the coastal ocean impacting the aquatic ecosystems and the people that depend on them. It is essential to consider these processes and downstream impacts when developing and implementing water quality protection and restoration actions. In this presentation an overview of the sources and transformation of major nutrients (C, N and P) within a watershed and the processes that affect nutrient dynamics at various settings in a watershed along the drainage network will be presented with emphasis on innovative isotope tools to track nutrient dynamics.

Keywords: Watersheds, Nutrients, Isotopes
Trends in precipitation and stream water chemistry in a forested watershed in the Kanto region, Japan

*Masahiro Kobayashi, Shuichiro Yoshinaga, Yuko Itoh, Yoshiki Shinomiya, Shuhei Aizawa, Toru Okamoto, Tatsuya Tsurita

1. Forestry and Forest Products Research Institute

It is widely accepted that forested watershed play an important functional role in maintaining and improving water quality. It has been an important issue to investigate the effect of environmental change (e.g. atmospheric deposition, climate change) and forest management practice on the water chemistry of forested watersheds. For the above purpose, we have been monitoring rainwater and stream water chemistry over 14 years at a forested watershed in Ibaraki prefecture, Japan. In the period 2001 –2014, the annual flux of precipitation nss-SO$_4$ tended to decrease. On the other hand, the annual flux of precipitation Inorg-N exhibited an increasing trend. Annual mean concentration of stream water SO$_4$ was almost constant in the period 2001-2011, increased after forest thinning operations conducted in 2012 and 2013. Annual mean concentration of stream water NO$_3$ tended to decrease before the thinning operations, and turned to increase after the operations. Similar increasing patterns after the thinning operations were observed in the concentrations of Ca and K. Stream water Si concentration exhibited very small fluctuation and tended to increase gently.

キーワード：森林、水質、モニタリング

Keywords: Forest, water chemistry, monitoring
Long-term dynamics and future perspective of streamwater chemistry in forested headwater catchments

*Masanori Katsuyama*¹, *Nobuhito Ohte*², *Ken’ichi Osaka*³

1. 京都大学学際融合教育研究推進センター グローバル生存学連携大学院ユニット、2. 京都大学情報学研究科、3. 滋賀県立大学環境科学部

In Japan, rainfall patterns have been changing and extreme storm events are increasing as the effects of climate change. These events will cause some kinds of changes of hydrological and hydrochemical responses of the catchments. However, the responses may differ depending on the attributes and/or background conditions of each catchment. In this study, we discuss about past, current, and future hydro-biogeochemical responses in a forested headwater catchment in Japan.

The observation was conducted in Kiryu Experimental Watershed (KEW). The area of KEW is 5.99 ha. The bedrock material is weathered granite, and the vegetation is Japanese Cypress planted about 60 years ago. Now, the forest is unmanaged, and it is the typical of Japanese artificial forest. We set up the nested catchments, K and M. The K catchment correspond to the whole of KEW, and the M catchment (0.68 ha) is one of a subcatchment of K. The observation has been conducting since 1972 for precipitation and discharge rate at K, and since 1990 for discharge rate at M and for streamwater chemistry at both catchments, respectively.

The number of rainy days is decreasing but days with larger rainfall intensity is increasing in KEW. The annual baseflow ratio is decreasing and annual direct runoff ratio is increasing at the K catchment as the result of the changing pattern of rainfall. The sediment transport at the K catchment was constrained by the erosion control dams, however, it abruptly increased since 2010 because overaged dams were damaged and destroyed by recent large precipitations.

The effects of rainfall patterns are unclear in the monthly streamwater chemistry. However, the chloride concentration is decreasing for decadal periods at both catchments. At the M catchment, the vegetation was disturbed at about 20% of catchment area around 1990, and the nitrate concentration was highest around 1997-1999, then gradually decreased till 2005. However, it is increasing again in recent 10 years. At the K catchment, the effects of disturbance occurred at the M catchment was not so clear, but it is also increasing in recent 10 years. The dynamics of the streamwater chemistry in recent 10 years may be a result of the forest degradation, that is, chloride shows the decrease of evapotranspiration and nitrate shows the decrease of nutrient uptake.

The direct runoff rate and nitrate load at dormant (Oct. to Mar.) and glowing (Apr. to Sep.) seasons were estimated and considered the relationship to the precipitation in each season for K catchment. The nitrate load was estimated using the power-law relationship of concentration (C) and discharge rate (Q). The direct runoff rate is larger in the glowing season, that is, in rainy season in Japan, and consequently the nitrate load also larger in the season. This fact means that the nitrate load is mainly controlled by the hydrological processes. Moreover, it is suggested that the increase of extreme storm events especially in summer may cause the explosion of nitrate export from the headwater catchment to the downstream.

For the future perspective under the climate change, forested headwater catchments will respond both hydrologically and biogeochemically. In our site, the solute transport mainly controlled by the hydrological responses. However, the forest degradation can cause the change of the biogeochemical condition, and it will be the base of the streamwater chemistry. Therefore, we need to keep on monitoring...
to detect these changes with the state-of-the-art techniques.

キーワード：長期観測、渓流水質、源頭部森林流域、水文過程、森林動態
Keywords: long-term monitoring, streamwater chemistry, forested headwater catchment, hydrological processes, forest dynamics
湿原に隣接した未利用草地における地表水と地下水の栄養塩供給源の推定

Estimation of nutrients sources for surface and ground water in an abandoned meadow adjacent to mire area

*木塚 俊和1、三上 英敏1、亀山 哲2、小野 理1
*Toshikazu Kizuka1, Hidetoshi Mikami1, Satoshi Kameyama2, Satoru Ono1

1. 地方独立行政法人北海道立総合研究機構環境科学研究センター、2. 国立研究開発法人国立環境研究所生物・生態系環境研究センター

北海道東部の釧路湿原周縁部では、近年、排水不良によって耕作が困難な牧草地（未利用草地）が増加しつつある。未利用草地の増加は酪農経営を圧迫する他、農作物被害をもたらす野生生物の増加や景観の悪化など様々な負の影響をもたらすことから、未利用草地の有効活用が課題となっている。我々は、湿地の水質浄化機能に着目し、未利用草地の有効活用策のひとつとして、湿原と牧草地の間の緩衝帯としての役割について検討している。本報では、特に栄養塩循環機能の定量的評価を目指し、鶴居村の未利用草地を対象に、(1) 未利用草地の地表水・地下水の水質の現状を評価すること、(2) 水位と水質の空間変化と地下水の窒素安定同位体比から栄養塩類の供給源を明らかにすることを目的とした。

湿原に隣接した未利用草地において、四方を明渠排水路に囲まれた約100 m×175 mを調査区とした。調査区は北から南にかけて1/200程度の勾配で緩やかに傾斜するとともに、東側と西側の明渠排水路に沿って地盤が低下していた。調査区内に25 m四方の方形区を28区画設け、各区画の中心点に地下水位観測管とピエゾメーターを設置した。ピエゾメータは受圧部が地面から30, 80, 130 cmの深さになるよう各地点3本ずつ設置した。2015年8・10月、2016年には5～11月に月1回程度、調査区の地表水とピエゾメータ内の地下水、明渠排水路と近隣河川の表流水、降水を採取した。試料水のEC、pH、DO、ORP、窒素、リン濃度を測定した。2016年11月には調査区内4地点と、近隣河川の河畔湿地2地点で30 cm深ピエゾメータ内の地下水を対象にδ15N値を分析した。調査区の水文環境を調べるために、調査区内で標高が低く常時冠水している地点に1箇所、調査区の北側と南側の明渠排水路各1箇所に自記水位計を設置して水位を連続観測した。

調査区の水位は地盤高の最高地点からやや下がった地点で高かった。地盤高の低い東側及び南西側の明渠排水路近傍では常時冠水していた。調査区の水位は観測期間で90 cm近くの変動を示した。2016年8月には台風に伴う異常出水により地表水の水質に影響していると考えられる。

2016年8月を除く平常時の溶存態窒素（DTN）は調査区中央部の30 cm深地下水で濃度のピークが認められた。地下水中のDTNの内、有機態窒素（DON）とNH4-Nがそのほとんどを占めた。溶存態リン（DTP）は常時冠水する明渠排水路近傍の30 cm深地下水で比較的高い濃度を示した。地下水中のDTPの大部分は有機態リン（DOP）だった。調査区の地表水や地下水のDTN、DTP濃度は、明渠排水路や河川の表流水に比べて高かった。

2016年8月の異常出水時には、地表水のDTN、DTPが平常時に比べて高濃度を示した。そのDTNの6割は無機態窒素（DIN）で、内NO3-Nの割合が大きかった。DTPの7割はPO4-Pだった。調査区の地表水はすべての水質項目で明渠排水路の表流水と類似していた。このことから、明渠排水路の水が調査区内に流入して、地表水の水質に影響していると考えられる。

DTP濃度の高かった明渠排水路近傍の地下水で、15～30%程度の高いδ15N値を示した。この地下水中の栄養塩類の起源として堆肥の影響が示唆される。一方、DTN濃度の高かった調査区中央部の地下水のδ15N値は5～8%程度と比較的低かった。このことから、調査区中央部には明渠排水路近傍とは異なった栄養塩の起源が存在し、これが調査区の地下水の主要な窒素供給源になっていると考えられる。

キーワード：窒素安定同位体、栄養塩循環機能、泥炭地、空間変化、冠水

©2017. Japan Geoscience Union. All Right Reserved. - AHW32-05 -
Keywords: nitrogen stable isotope, nutrient cycling function, peatland, spatial variation, waterlogging
Effect of tidal variation on sediment nutrient releasing from Osaka Bay.

*Guangzhe Jin¹, Shin-ichi Onodera¹, Mitsuyo Saito², Yusuke Tomozawa¹, Yuki Ohira¹

1. Graduate School of Integrated Arts and Science, Hiroshima University, 2. Graduate school of environmental and life science, Okayama University

Understanding the nutrient discharge into the coastal area is important in environmental managing and eutrophication control. Nutrient releasing from coastal sediments has been considered to be a major resource contributing to coastal nutrient cycle, particularly in the tidal river mouth area. Due to the complicated physical/chemical mechanisms, it is difficult to quantify the nutrient releasing rate in these areas. Our objective is to clarify the processes of nutrients across the sediment-water interface affected by tidal pumping, internal diffusion flux, and flood events, based on onsite monitoring, lab experiments, and hydrological model simulations.

Several cores and surface sediment have been taken in September 2016 for laboratory incubation experiments. Sediment samples were used for incubation experiments with/without an additional pressure variation of 2 meters. Surface water and bottom water were also taken along the transaction line from the river mouth to open bay. Water samples were analyzed for nutrient contents and then releasing flux were calculated.

Results show that nutrient contents are higher in bottom water during falling tide while in surface water are higher during rising tide, represents the nutrient transport are mainly in surface layer with river discharge in falling tide with high sediment releasing flux. In rising tide, tidal movements prohibit the transporting of nutrient during and decrease the sediment releasing flux. Core pore water profile shows decreasing trend upwards in Nitrate, ammonium, and phosphate. It indicates a strong releasing pattern of nutrient from sediment. Incubation results show high releasing flux similar to the diffusion flux calculated from pore water concentrations. The tidal pumping can double the ammonium and phosphate releasing flux in one week periods.

キーワード：堆積物、栄養塩溶出、潮汐ポンプ、下水処理場
Keywords: sediment, nutrient releasing, tidal pumping, sewage treatment plant
Nitrogen and phosphorus dynamics in two Japanese river networks with contrasting watershed land use

*Tomoya Iwata¹, Takuya Hayashi², Masanori Akashi², Aya R. Murakami³, Noboru Okuda⁴

¹Faculty of Life and Environmental Sciences, University of Yamanashi, ²Faculty of Engineering, University of Yamanashi, ³Center for Ecological Research, Kyoto University, ⁴The Research Institute for Humanity and Nature

Riverine transport of nitrogen and phosphorus from watersheds can be an important flux that affects the integrity of their downstream ecosystems. Thus, numerous nutrient-transport models have been developed to predict nitrogen and phosphorus flux from lands to the oceans. However, nutrient removal by stream ecosystems in the entire river network, from headwater streams to downstream rivers, has remained unknown. Here, we developed the nutrient transport models that explicitly incorporate stream ecosystem metabolism in order to understand the roles of in-stream processes (i.e., nutrient uptake) in controlling the nitrogen and phosphorus flux to downstream ecosystems.

We performed two field sampling campaigns covering the whole area of Yasu River and Ado River watersheds, central Japan, during September and October in 2012 and 2014, respectively. Both rivers are major tributaries of the Japan’s largest lake, Lake Biwa, with their watershed land-use patterns differing from each other significantly. Ado River watershed is characterized by forested vegetation with no strong anthropogenic impacts, while Yasu River watershed is composed of various land uses including urban development, agricultural fields (mostly rice paddies), and planted forests. In each watershed, we established a number of sampling sites in streams/rivers to measure discharge, nitrogen and phosphorus concentrations, and other physico-chemical variables. We then developed the modified version of spatially referenced process-based model (SPARROW) to describe the observed flux of nitrogen and phosphorus in the entire area of each river networks. In the models, we formulated the in-stream processes of N and P uptakes as kinetic equations of stream metabolism, which depends on water temperature, light, and/or substrate abundance.

In this presentation, we show the predictions by our models for the effects of watershed land uses on the amount of nitrogen and phosphorus exports by rivers. The model also predicts how land-use patterns, as well as other watershed attributes, affect the nutrient spiraling metrics: the estimates of areal uptake rates (U), uptake velocity (v_u) and uptake length (S_u) of nitrogen and phosphorus in the river ecosystems. The results clarify the nitrogen and phosphorus dynamics in river networks with contrasting watershed land use to emphasize that stream ecosystem function can alleviate the negative effects of watershed human activities on the nutrient transport to downstream river and lake ecosystems.

Keywords: SPARROW, spiralling metrics, river network
Quantification of phosphorus and nitrogen uptake in a tropical freshwater ecosystem in Southeast Asia suggests N limitation

*Irisse Bianca Baldovino De Jesus¹, Jonathan Carlo A Briones¹,²,³, Osbert Leo A Privaldos⁵, Elfritzson Martin Peralta², Yoshitoshi Uehara⁷, Takuya Ishida⁷, Adelina Santos Borja⁵, Francis S Magbanua⁴, Rey Donne S Papa¹,²,³, Tomoya Iwata⁶, Noboru Okuda⁷

Nitrogen and phosphorus kinetics plays an essential role in the sustainability of watersheds but their increased availability also brings adverse impacts to water quality, species diversity, human health and ecosystem balance. This study reports on nitrogen limitation in headwater streams in Silang-Santa Rosa Subwatershed (SSRS). Moreover, this is the first attempt in studying nutrient spiralling in Philippine headwater streams using Tracer Addition for Spiralling Curve Characterization (TASCC). Phosphorus uptake kinetics showed shortest uptake length ($S_{\text{amb}} = 25.27\text{m}$), highest aereal uptake rate ($U_{\text{amb}} = 37.46 \text{ mg-P/m}^2/\text{min}$) and uptake velocity ($V_{f_{\text{amb}}} = 162.12 \text{ mm/min}$) in an agricultural site and longest uptake length ($S_{\text{amb}} = 109.24\text{m}$), lowest aereal uptake rate ($U_{\text{amb}} = 0.31 \text{ mg-P/m}^2/\text{min}$) and uptake velocity ($V_{f_{\text{amb}}} = 2.76 \text{ mm/min}$) in a residential site. Nitrogen uptake showed undetected peaks that is suspected as N limitation supported by significant correlations for U_{amb}-P and NH_3 ($R=0.919, 95\%$) and N:P ratio (0.4923). Overall, this research aids in the Philippine land use planning and watershed management for ecological sustainability and serves as a contribution in tropical studies particularly in nutrient dynamics.

Keywords: Tracer Addition for Spiralling Curve Characterization, Philippines, nutrient dynamics
The quantitative evaluation of bio-available particulate phosphorus discharged from Yasu River.

*尾坂 兼一1、千代 真照2、岩田 智也3、奥田 昇4
*Ken’ichi Osaka1, Shinsho Chishiro2, Tomoya Iwata3, Noboru Okuda4

1. 滋賀県立大学 環境科学部、2. 滋賀県立大学大学院 環境動態学専攻、3. 山梨大学 生命環境学部、4. 総合地球環境学研究所
1. School of ecosystem study, University of Shiga Prefecture, 2. Graduate School of Environmental Science, University of Shiga Prefecture, 3. Faculty of Environmental Science, University of Yamanashi, 4. Research Institute for Humanity and Nature

It is well known that primary production in Lake Biwa is limited by phosphorus, and that means phosphorus load into Lake Biwa influence on its environment. In general, it is considered that algae in aquatic ecosystem use soluble reactive phosphorus (SRP) as a phosphorus source, however, it has been revealed that a part of particulate phosphorus (PP) also might be used as phosphorus source in recent study. It has been reported that PP discharge from watershed increases during ploughing and irrigating the fields or rainfall event, and most of the annual phosphorus load discharged through river is PP. Those mean that discharge of bio-available PP from watersheds has critical potential to control primary production in aquatic ecosystems. However, there are a few studies that clarify the sources and amount of bioavailable fraction of PP discharged from watersheds in Japan. The purpose of this study is to estimate sources and amount of bioavailable fractions of PP discharged from Yasu river watersheds.

River water samples were collected in 5 sites in Yasu river from one to four weeks interval from April 2014 to May 2015. Drainage from paddy fields were collected from Koka city, where locates in middle part of Yasu river watershed 3 times from May 2015 to July 2015. River water during rainfall events was also collected at 2 times in down stream site and 1time in up stream forested site in Yasu river watersheds. We separated several fractions of PP from suspended sediment (SS) by sequential extraction methods (1M ammonium chloride, 0.11M bicarbonate dithionite (BD), 1M NaOH, 0.5M HCl extraction) in water sample. SRP extracted from the particle fraction was determined by the molybdenum-blue method. We assumed that SRP extracted by ammonium chloride (NH₄Cl-SRP) and bicarbonate dithionite (BD-SRP) were bio-available PP because NH₄Cl-SRP release SRP in low SRP concentration environment and BD-SRP release SRP in reductive condition.

PP concentrations in Yasu river were higher during ploughing period and rainfall events. BD-SRP was dominant in base-flow in Yasu river, however NH₄Cl-SRP was also important in small rainfall event (15.5 mm) at ploughing period, and non reactive phosphorus (NRP) extracted by NaOH (NaOH-NRP) was also important at large rainfall (97 mm) in August. We will discuss the source of these fraction of PP and estimate the amount of discharge rate of those.

Keywords: particulate phosphorus, bioavailability, watersheds
Biogeochemical cycling of phosphate in the Yasu River Watershed: Insight from oxygen isotope of phosphate

*Takuya Ishida, Yoshitoshi Uehara, Tomoya Iwata, Osberet Privaldos, Satoshi Asano, Tohru Ikeya, Ken'ichi Osaka, Jun'ichi Ide, Ichiro Tayasu, Noboru Okuda

1. Introduction
Phosphorus (P) is an essential element for all living organisms and can be a limiting factor for primary production in river ecosystems. Therefore, its biogeochemical cycling is very important in proper land management and understanding of natural systems. Recently, oxygen isotope ratio of phosphate ($\delta^{18}O_{PO4}$) has been used as a tool to elucidate the P cycle. Previous studies showed the possibility to evaluate P sources, metabolism by organism in some ecosystems (Paytan & McLaughlin 2011). However, there are few research to show the spatial distribution of $\delta^{18}O_{PO4}$ in the watershed scale, and it is not clear whether $\delta^{18}O_{PO4}$ is useful for evaluating the biogeochemical cycling of P in the watershed scale. The purposes of this study are to show the $\delta^{18}O_{PO4}$ distribution in the watershed scale and to examine the relationship between $\delta^{18}O_{PO4}$ distribution and environmental factors, such as P sources, land use and physical characteristics of a river.

2. Material and Method
The investigation was conducted in the Yasu River Watershed in Shiga prefecture, central Japan. River water samples were collected at 15 sites including tributaries in May 2016. As a P source to the river, rocks (granite, sedimentary rock, accretionary complex), soils from forest and paddy filed, chemical fertilizers mainly used in Shiga prefecture and wastewater treatment plant water were collected. For $\delta^{18}O_{PO4}$ analysis, phosphate in all samples was converted to silver phosphate by McLaughlin et al. (2004) procedure with solid phase extraction method to remove dissolved organic matter. The $\delta^{18}O_{PO4}$ values were measured by a TC/EA-IRMS (thermal conversion elemental analyzer connected to a Delta plus XP isotope ratio mass spectrometer via ConFlo III, Thermo Fisher Scientific). The $\delta^{18}O_{PO4}$ values of biologically cycled phosphate ($\delta^{18}O_{PO4,eq}$) in the river water samples were calculated by Eq. 1 (Longinelli & Nuti 1973):

$$T = 111.4 - 4.3 (\delta^{18}O_{PO4} - \delta^{18}O_{w}) (1)$$

Where T is water temperature (°C); $\delta^{18}O_{PO4}$ and $\delta^{18}O_{w}$ are the $\delta^{18}O$ of phosphate and water, respectively.

3. Result and discussion
The $\delta^{18}O_{PO4}$ values in the river water samples ranged from 10.1‰ to 17.8‰. These values were different from the $\delta^{18}O_{PO4,eq}$ values at each site, indicating that the $\delta^{18}O_{PO4}$ values in river water samples can be used as a tracer for P sources in the Yasu River Watershed. Significant correlations were found between the $\delta^{18}O_{PO4}$ values in river water and the proportion area of the agricultural land and each rock. In addition, the direction of the regression line agreed with the $\delta^{18}O_{PO4}$ values in soil from paddy filed and each rock. These data suggest that agricultural land and rocks are main P sources to the river. Our
investigation showed that the $\delta^{18}O_{PO4}$ is useful for evaluation of biogeochemical cycling of P in the watershed scale.

Reference

キーワード：リン酸酸素同位体比、河川生態系
Keywords: Oxygen isotope of phosphate, Freshwater system
Comparisons of oxygen isotope ratio of phosphate in river water and rocks between two watersheds in central Japan

*Jun'ichiro Ide1, Abigail P. Cid-Andres2, Takuya Ishida3, Ken'ichi Osaka4, Tomoya Iwata5, Takuya Hayashi5, Masanori Akashi5, Ichiro Tayasu3, Noboru Okuda3

1. Institute of Decision Science for a Sustainable Society, Kyushu University, 2. Osaka University, 3. Research Institute for Humanity and Nature, 4. Department of Ecosystem Studies, University of Shiga Prefecture, 5. Faculty of Life and Environmental Sciences, University of Yamanashi

Excess phosphorus (P) utilization by human activities has resulted in a large amount of P loss from terrestrial to aquatic ecosystems, which in turn can induce eutrophication and subsequently algal bloom in enclosed waters. To control the P loss, the phosphate oxygen isotope ratio (δ18O_P) technique is expected to be applied for clarifying P dynamics in terrestrial ecosystems. This is because δ18O_P in river water could reflect sources of phosphate within the river watershed. However, very few studies have applied the δ18O_P technique to clarifying watershed-scale P dynamics and thus little information is available about what the river δ18O_P value indicates specifically within the watershed. To examine this, we compared the δ18O_P values in river water and rocks between two watersheds with different land-use and geological compositions. For this, we collected river water and rock samples and analyzed their δ18O_P values in subwatersheds of the Ado River and the Yasu River watersheds, which were dominated by forests and covered by large areas of agricultural lands, respectively, belonging to the Yodo River system in central Japan. The river δ18O_P value was significantly higher in the Ado River watershed than in the Yasu River watershed (u-test, p < 0.05). This could not be explained by the forest area ratio within a subwatershed. The relationship between river δ18O_P values and subwatershed areas revealed that the δ18O_P value tended to increase and reach a plateau as the subwatershed area increased. Additionally, the result showed that the river δ18O_P value was higher in the Ado River watershed than in the Yasu River watershed at a given subwatershed area. These findings are attributable to the fact that high values of δ18O_P in river water could derive from those in the accretionary complex. This is because geological compositions in the subwatershed with large area (10 km²) contain the accretionary complex in the Yasu River watershed and also because geology in the Ado River watershed is composed mostly of the accretionary complex. On the other hand, the river δ18O_P value could change not only by the geological factor, but also by biologic uptake of phosphate. It is possible that changes in the river δ18O_P value with the subwatershed area resulted partly from an increase in the opportunity for the biologically-mediate oxygen isotope exchange between water and phosphate associated with the increased river length.

Keywords: Stable isotope analysis, Source of phosphate, Diffuse pollution, Lake Biwa, Accretionary complex
Some toxic trace elements are often transported to paddy field through irrigation from river water. The transportation mechanism of toxic trace elements in a local river water system is important for sustainable, environmental conservation and for risk reduction. In order to clarify the transportation process on As and Cs in the grain of paddy rice, we analyzed the concentrations of trace and major elements in three river waters, paddy field waters, and paddy rice, root, shoot, leaf, and grain, and paddy soil, separately, in three areas. From the complex relationships between As and Fe, and Cs and Fe in various situations, it is inferred that Fe works as an attracter to As and Cs within paddy rice, though these elements are often transported in river water, separately. The As and Fe in rice grain correlates with Fe in paddy water, while they are not correlates with Fe in paddy soil, suggests the As in rice grain comes from river water through irrigation. The Cs in rice grain correlates with Cs in paddy water, indicates Cs comes from river water through irrigation.
Denitrification in the banks of fluctuating rivers: the effects of river stage amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow

*Pin Shuai¹, Meinhard Bayani Cardenas², Peter S.K. Knappett¹, Philip C. Bennett², Bethany T. Neilson³

1. Texas A&M University College Station, 2. University of Texas, Austin, 3. Utah State University

Hyporheic exchange induced by periodic river fluctuations leads to important biogeochemical processes, particularly nitrogen cycling, in riparian zones (RZs) where chemically distinct surface water and groundwater mix. Based on field observations, we developed a two-dimensional coupled flow, reactive transport model to study the influence of river fluctuations on nitrogen cycling within the RZ during a single 24 h pulse. Sensitivity analyses were conducted to quantify the effects of river amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow on nitrate removal efficiency. The simulations showed that nitrification occurred in the shallower zone adjacent to the bank where oxic river water and groundwater interacted while denitrification occurred deeper into the aquifer and in the riverbed sediments where oxygen was depleted. River fluctuations greatly increased the amount of nitrate being removed; however, the removal efficiency, the ratio of the mass of nitrate being removed due to denitrification and the total mass of nitrate entering aquifer, decreased as river amplitude increased. Similarly, increasing hydraulic conductivity increased overall nitrate removal due to a large denitrifying zone but with decreasing efficiency. In contrast, increasing sediment dispersivity increased the removal efficiency of nitrate. The presence and direction of ambient groundwater flow had a significant impact on nitrate removal efficiency when compared to neutral conditions. A losing river showed smaller removal efficiency (3.5%) while a gaining river showed larger removal efficiency (17.1%) compared to neutral conditions (5.4%). Our results demonstrated that daily river fluctuations created denitrification hot spots within the RZ that would not otherwise exist in a neutral or gaining conditions under natural baseflow.

Keywords: Riparian Zone, Denitrification, River fluctuation
Nitrogen cycling within a riparian zone

- Driven by hyporheic exchange

1. Aerobic respiration: \(\text{CH}_2\text{O} + \text{O}_2 \rightarrow \text{H}_2\text{O} + \text{CO}_2 \)
2. Nitrification: \(\text{NH}_4^+ + 2\text{O}_2 \rightarrow \text{NO}_3^- + \text{H}_2\text{O} + 2\text{H}^+ \)
3. Denitrification: \(5\text{CH}_2\text{O} + 4\text{NO}_3^- + 4\text{H}^+ \rightarrow 7\text{H}_2\text{O} + 5\text{CO}_2 + 2\text{N}_2 \)
Land-use patterns in watershed influence denitrification process in stream sediment

Hojeong Kang

1. Yonsei University

Land-use patterns can affect various nutrient cycles in stream ecosystems, but little information is available on their effects on denitrification processes at the watershed scale. In the presented study, we investigated the controlling factors of denitrification rates within streams of the Han River Basin, Korea with different land-use patterns in order to enhance the effectiveness of water resource management strategies. Ten small watersheds were classified into three land-use patterns (forested, agricultural and urban) using satellite images and a geographic information system technique, and in-situ denitrification rates were determined using an acetylene blocking method. Additionally, sediment samples were collected from each stream to analyze denitrifier communities (T-RFLP) and abundances (real time qPCR) targeting nirS and nosZ genes. In-situ denitrification rates were found to be in the order of agricultural streams (289.6 mg N₂O-N m⁻² d⁻¹) > urban streams (157.0 mg N₂O-N m⁻² d⁻¹) > forested streams (41.9 mg N₂O-N m⁻² d⁻¹). The quantity of nirS genes was the highest but that of nosZ genes was the lowest in agricultural streams. In contrast, genetic diversity of denitrifying genes was not affected by watershed land-use patterns, but exhibited stream-dependent patterns. While land-use pattern is the most prominent evaluator for the denitrification rates at a landscape scale, other factors such as clay content, DOC and temperature are as important at a local scale.

Keywords: Denitrification, Land use patterns, Microbial communities, Stream
Bacterial community composition and richness in biofilms of the Yasu and Ado Rivers

*藤永 承平1, 小林 由紀2, 村上 綾1, 潮 雅之1, Song Uhram3, 陀安 一郎4, 石川 尚人5, 岡野 淳一1, Ko Chia-Ying6, 富樫 博幸7, 酒井 陽一朗8, 伊藤 雅之9, 大手 信人10, 中野 伸一1, 岩田 智也11, 奥田 昇4
*Shohei Fujinaga1, Yuki Kobayashi2, Aya R. Murakami1, Masayuki Ushio1, Uhram Song3, Ichiro Tayasu4, Naoto F. Ishikawa5, Junichi Okano1, Chia-Ying Ko6, Hiroyuki Togashi7, Yoichiro Sakai8, Masayuki Itoh9, Nobuhito Ohte10, Shin-ichi Nakano1, Tomoya Iwata11, Noboru Okuda4

1. 京都大学生態学研究センター、2. 山口大学大学院医学系研究科、3. 済州大学自然科学、4. 総合地球学研究所、5. スイス連邦工科大学チューリッヒ校、6. 台湾大学水産研究所、7. 水産研究教育機構東北区水産研究所、8. 琵琶湖環境科学研究センター、9. 京都大学東南アジア研究所、10. 京都大学大学院情報学研究科、11. 山梨大学生命環境学部

1. Center for Ecological Research, Kyoto University, 2. Yamaguchi University Graduate School of Medicine, 3. Department of Biology, Jeju National University, 4. Research Institute for Humanity and Nature, 5. Eidgenössische Technische Hochschule Zürich, 6. Institute of Fisheries Science, National Taiwan University, 7. Tohoku National Fisheries Research Institute, Fisheries Research Agency, 8. Lake Biwa Environmental Research Institute, 9. Center for Southeast Asian Studies, Kyoto University, 10. Department of Social Informatics, Graduate School of Informatics, Kyoto University, 11. Faculty of Life and Environmental Sciences, University of Yamanashi

Biofilm bacteria play important roles in the biogeochemical cycling of river ecosystems through processes such as accumulation, decomposition, and assimilation of organic matter. Although bacterial community compositions (BCCs) have previously been reported, factors determining their spatial distribution patterns are still poorly understood. It is difficult to disentangle confounding factors affecting the BCCs in stream/river biofilms due to the high spatial correlation among environmental variables within stream networks. In this study, we focused on BCC variations within and between tributaries of two rivers which have different land use patterns in their catchments in order to evaluate the relative importance of geographical and local habitat variables on BCCs.

Samples were collected from several tributaries in the Yasu and Ado Rivers draining into the Lake Biwa, Japan. Five stones were collected at each site and biofilm was detached from 6 cm square surface of each stone for DNA extraction. The extracted DNA was sequenced on Illumina MiSeq and clustered into operational taxonomic units (OTUs) at a 97 % sequence similarity level. Environmental parameters were measured and separated into two categories: geographical variables (altitude, catchment area, and land use) and local habitat variables (river depth, current velocity, water temperature, canopy openness, electric conductivity, total nitrogen, and total phosphorus).

8,547 OTUs were obtained after rarefying reads to the lowest coverage of reads and Bacteroidetes, Alphaproteobacteria, Betaproteobacteria and Cyanobacteria, all of which has been often regarded as common taxa in river biofilms, dominated in both rivers. BCCs were significantly different at the catchment scale between Yasu and Ado Rivers (PERMANOVA, p < 0.001). When the data from both rivers were pooled, two local habitat factors, water temperature and electric conductivity, significantly accounted for the dissimilarity of BCCs in both rivers (Mantel test, p < 0.001). However, when the data were analyzed separately between the two rivers, neither geographical nor local habitat factors significantly determined the spatial variation of BCCs within the river network system (PERMANOVA, p > 0.05 and Mantel test, p > 0.05). In both rivers, bacterial richness decreased with increasing current velocity (Spearman rank test, p < 0.01).

Our data suggest that (1) BCCs across Yasu and Ado River watersheds are more influenced by local habitat factors than by geographic factors; and (2) physical disturbance by high current velocity could be
a primary factor affecting bacterial diversity in biofilms of river ecosystems.

キーワード：淡水生態系、微生物、バイオフィルム
Keywords: Freshwater, Microbe, Biofilm
Alpha and beta diversity of benthic macroinvertebrates in natural and disturbed river watersheds and their environmental driver

*Chia-Ying Ko¹, Tomoya Iwata², Jun-Yi Lee³, Aya Murakami⁴, Junichi Okano⁵, Naoto Ishikawa⁵, Yoichiro Sakai⁶, Ichiro Tayasu⁷, Masayuki Itoh⁶, Uhram Song⁹, Hiroyuki Togashi¹⁰, Shinich Nakano⁴, Nobuhide Ohte¹¹, Noboru Okuda⁷

Knowledge about habitat transformation and disturbance of wildlife is important for concern in biodiversity conservation. The number of species coexisting in ecological communities between different levels of disturbance and how it contributes to species diversity due to symbiotic dependencies with environments is little to be known in freshwater ecosystems. We estimated alpha and beta diversity of benthic macroinvertebrates and relationships between species diversity and environmental predictor variables by sampling the diversity of local sites in Ado River (natural) and Yasu River (intermediate disturbance) watersheds, Japan, separately. The alpha diversity was consistently slightly higher in the natural system than in the intermediate disturbed system but was not equivalent in their spatial distributions. The opposite pattern was evidenced for the beta diversity assemblages. The values of species richness and abundance showed a highly linear positive correlation, except that alpha richness and abundance in Yasu River watershed consisted of the bell-shaped correlation. Significant differences on environmental variables between two watersheds were exhibited, especially high chlorophyll a concentration detected in the intermediate disturbed system. The alpha diversity were not correlated with similar environmental variables whereas water temperature and chlorophyll a concentration across sites were the two most significantly important predictor variables for beta diversity in the two river watershed systems. These results suggest that patterns of local and regional diversity in freshwater benthic macroinvertebrate communities are differently influenced by levels of disturbance, which may benefit to increasing species diversity than previously thought through generating habitat heterogeneity processes, and understanding how both alpha and beta diversity vary with disturbance and how they relate to environments is essential for protecting local to regional diversity and can directly assist conservation planning.

Keywords: Benthic macroinvertebrates, Disturbance, River watershed, Biodiversity, Environmental driver

©2017. Japan Geoscience Union. All Right Reserved.
Benthic macroinvertebrates response to water quality and canopy cover of a heavily impacted tropical subwatershed

*Elfritzson Martin Peralta¹, Leocris Batucan⁴, Yoshitoshi Uehara⁶, Takuya Ishida⁶, Yuki Kobayashi⁶, Chia-Ying Ko⁷, Tomoya Iwata⁸, Adelina Borja⁵, Jonathan Carlo Briones¹,²,³, Rey Donne Papa¹,²,³, Francis Magbanua⁴, Noboru Okuda⁶

Benthic macroinvertebrates have been shown to respond to varying degrees of physicochemical changes in freshwater ecosystems. However, studies on the assemblages and how these macroinvertebrates respond to changes in environmental factors are poorly understood in a tropical, archipelagic setting. Such changes have potential adverse effects on stream macroinvertebrates but we do not know if the same pattern may be observed in the streams of Silang-Santa Rosa Subwatershed (SSRS). Thus, we are testing this hypothesis in the SSRS which is an ideal representative for the tropical scenario. This study investigated stream benthic macroinvertebrates in the SSRS, which has recently been shown to have changed its land cover due to conversion of farmlands into non-agricultural uses and further urbanization. On November 2015, 13 sites were sampled for benthic macroinvertebrates and monitored for environmental variables such as canopy openness, pH, water temperature, dissolved oxygen (DO), total dissolved solids (TDS), conductivity, salinity, nitrates, ammonia, dissolved inorganic phosphates (DIP), and total phosphorus (TP). Biodiversity indices and biomonitoring metrics were calculated and analyzed along with environmental variables. Results of both principal component analysis and hierarchical cluster analysis indicated differences in environmental variables among land cover categories. First principal component described a gradient from primarily vegetated sites (agricultural or residential land uses) with relatively good water quality to primarily non-vegetated sites (residential or industrial land uses) with poor water quality. Primarily vegetated sites generally exhibited relatively high DO and nitrates while primarily non-vegetated sites showed high canopy openness, ammonia, TP, conductivity, salinity and TDS. Canopy openness, conductivity, DO, and water nutrients appeared to be the most important factors predicting benthic macroinvertebrate assemblages. Sensitive genera from Ephemeroptera, Trichoptera, and Coleoptera dominated primarily vegetated sites while tolerant blood worms, Chironomus sp., were abundant in primarily non-vegetated sites. Benthic macroinvertebrate assemblages respond to anthropogenic changes which can be observed among nutrient-densed tropical stream ecosystems such as Silang-Santa Rosa Subwatershed. This paper highlights the potential of these macroinvertebrates together with water quality parameters for biomonitoring purposes and conservation initiatives in such heavily impacted subwatershed.

Keywords: Philippines, biomonitoring, canopy openness, land use, water chemistry, tropical streams
Mesozooplankton, a key transporter of anthropogenic nutrients from headwaters to the coastal ocean in a highly urbanized drowned river valley estuary.

*Daniel P Harrison¹

1. University of Sydney

I will present the results of a 12 month study in which we sought to elucidate the relationship between anthropogenic nutrient inputs and mesozooplankton community structure in an urbanized, temperate, drowned river valley estuary system. Sydney Estuary on the East coast of Australia receives pulsed nutrient inputs primarily through storm water runoff from its highly urbanized (80%) catchment, with the majority of loading introduced through three head waters. Despite the relatively short distance from headwaters to mouth (15-30km) little of the introduced nutrient is transported directly to the coastal ocean. Instead the majority of the nutrient is assimilated into the estuarine food web exerting bottom up control on zooplankton community size structure and abundance. Our results using stable isotope analysis indicate the role of mesozooplankton in assimilation of anthropogenic nutrients and carbon varies on a gradient from the estuarine headwaters to the coastal ocean. It has been previously hypothesized that the coastal ocean acts as a source of mesozooplankton, supporting the productive fisheries and biodiversity of the lower harbour. We show the inverse to be true, in the more impacted upper estuary nutrients are incorporated into phytoplankton biomass which is eventually consumed by mesozooplankton in the middle and lower estuary. As zooplankton abundance greatly exceeds demand from predation within the harbor, the mesozooplankton provide a significant transport of N & C to the coastal ocean, presumably contributing to the diet of coastal ocean zooplanktivores.

Keywords: Mesozooplankton, Stable Isotopes, Biogeochemistry, Fisheries, Anthropogenic Nutrients, Urbanization
Spatial Variation in Lacustrine Groundwater Discharge (LGD) as a Nutrient Source in Lake Biwa, Japan

*Shin-ichi Onodera¹, Mitsuyo Saito², Syuhei Ban³, Guangzhe Jin¹, Yusuke Tomozawa¹, Noboru Okuda⁴

1. Graduate School of Integrated and Arts Sciences, Hiroshima University, 2. Graduate School of Environmental and Life Science, Okayama University, 3. The University of Shiga Prefecture, 4. Research Institute for Humanity and Nature

Groundwater discharge and nutrient flux into a lake has not been confirmed enough in terms of spatial variation including those in deeper zone. Biwa Lake has different characteristics between in northern and southern. In northern, the water depth varies up to 100m, groundwater discharge is also expected not only in beach sides with shallower depth but in deeper zones. We examined to indicate spatial variation of Rn-222 and to compare with the results of seepage observations by Kobayashi (1993).

Radon radioisotope (Rn-222) concentrations were measured by a RAD7 at 500 m interval along the whole shoreline of the northern lake, and surface water samples were coincidently collected. Oxygen stable isotope ratio (δ¹⁸O), Chloride anion and nutrients (nitrogen, phosphorus, and silicon) concentrations were measured in the laboratory in order to evaluate inflow of the groundwater into the lake. Those dissolved materials were also measured from the groundwater samples were collected in ca. 20 wells situated along the shore of the lake as well as those in river waters. In the eastern coast (Hikone), artesian groundwater was also collected because of aquiclude at 10m deep under the ground. Lake waters at the surface, middle and bottom layers and interstitial waters in the bottom sediments were collected for measuring Rn-222 concentrations.

At the both sites of Yasu and Takashima, high pressures of groundwater indicated flow of the water to the lake under the ground. Spatial distributions in Rn-222, Cl⁻ and nutrient concentrations with those in δ¹⁸O along the coasts also indicated discharges of groundwater into the lake. High concentrations of dissolved phosphorus phosphate (> 0.1ppm) were detected from several wells out of 15 ones investigated. Based on the comparative results with the seepage observations, we could confirm good correlation between Rn-222 concentration and seepage observation results.

In addition, Rn-222 concentrations in lake waters were measured in the surface and bottom layers at the 4 stations with different water depths (5m, 10m and 20m) in October 2015 and July 2016. The highest Rn-222 was observed in the bottom layer at 20m-deep site in both periods. The concentration was more than 2-fold of that in the littoral site. It suggests high possibility of deep-LGD from offshore lake floor.

Keywords: lacustrine groundwater discharge, phosphorus, radon
Spatial evaluation of submarine groundwater discharge (SGD) on an island scale in a temperate coastal sea

*Mitsuyo Saito*¹, Aiping Zhu²,³, Shin-ichi Onodera², Guangzhe Jin², Yuta Shimizu⁴, Kenji Okubo¹

1. Graduate School of Environmental and Life Science, Okayama University, 2. Graduate School of Integrated Arts and Science, Hiroshima University, 3. School of Geography and Planning, Sun Yat-sen University, 4. National Agriculture and Food Research Organization Western Region Agricultural Research Center

Submarine groundwater discharge (SGD) is defined as subsurface water flow at continental margins from the seabed to the coastal ocean. As a component of the hydrological cycle, SGD plays an important role in the overall coastal water budget, which can rival or even exceed surface runoff in some coastal areas. In addition, because it often contains higher nutrients than river water, SGD delivers comparatively large quantities of nutrients to coastal ecosystems. However, there are few studies to evaluate the spatial relation among SGD, nutrient condition and coastal ecosystem such as seagrass meadows. In the present research, we aimed to examine the spatial variation of SGD and its effect on coastal environment in an island scale.

The study area is Ikuchijima Island in Seto Inland Sea, southern Japan. The regional climate is mild, with an annual mean precipitation of 1,100 mm and temperature of 15.6 °C. The whole island is characterized by steep slopes and is widely covered by citrus farms with more than 40% of the island. To evaluate the spatial distribution of SGD at the small island scale, we performed a radon (²²²Rn) monitoring survey along the coastline of Ikuchijima Island. Large variability in SGD was observed, with significant discharges seen in areas of steep topography and much lower discharges from low-lying areas. Topographic influences are likely to be the major driver of spatial variability in SGD. Based on a ²²²Rn mass balance model, the SGD rates were estimated to range from 8.38 cm d⁻¹ to 17.02 cm d⁻¹, with an average of 12.98 cm d⁻¹. The results were in good agreement with SGD estimated by the topographic model based on Darcy’s law and inland topographic gradient near the coastline. Estimated nutrient loading through the SGD were comparable to or even higher than that from local streams. It suggests SGD is an important source of nutrients to coastal ecosystems in the area. Distribution of seagrass meadows tend to correspond totally to the spatial variation of SGD, especially the fresh submarine groundwater discharge (FSGD) estimated by the topographic model.

キーワード：海底湊水、島嶼、栄養塩、藻場
Keywords: submarine groundwater discharge, island, nutrient, seagrass meadows
Nutrient imbalance and diversity of plankton community in lagoon lakes around Lake Biwa

*Syuhei Ban¹, Shunpei Doi¹, Michikusa Tachibana¹, Xin Liu¹

¹. The University of Shiga Prefecture

There were a lot of environmental problems during the past eutrophication period in Japan. The situation has been improved after 1980’s due to reduction of N and P loadings from point sources. However, potential fluxes of N from atmosphere and farmland may cause N/P imbalance in several aquatic environments, though there are no clear evidences how such nutrient imbalance influences aquatic ecosystems until now. In this study, we determined dissolved nutrients and sestonic C/N/P ratios in several lagoon lakes around Lake Biwa, the largest lake in Japan, and species composition of phyto- and zooplankton living there, to evaluate effects of the nutrient imbalance on diversity of plankton.

Methods
Field observations were made at Lakes Kohoku-nodanuma (KN), Hasu-ike (HI), Katada-naiko (KD), Yanagi-hirako (YH), Jinjo-numa (JI), Hamabun-numa (HN) in August and October 2014, February, May, and July 2015. >70% of land use in 4 lakes out of 6 was rice paddy except for KD (17%) and HI (52%). Water samples for chemical analyses and phytoplankton counts were collected at outlet, inlet and two pelagic sites in each lake. Zooplankton was collected with a 40-μm-mesh, and then preserved with 4-5% sugar-formalin. Water temperature, pH, EC and turbidity were measured with a Horiba U-50. The water samples were filtered in the laboratory. Nutrients (NH₄-N, NO₃-N, NO₂-N and PO₄-P) for the filtrates were measured. Suspended solid (SS), sestonic C, N, P and chlorophyll a concentration (chl. a) for the residuals were measured. Phyto- and zooplankton species in each preserved plankton samples were counted, and then diversity indices (H’) were calculated.

Results
Water temperatures seasonally varied 10-29°C in all lakes studied. Chl. a largely varied with lakes, and lowest in HI (<15 μgL⁻¹) while highest in YH and JI (40-60 μgL⁻¹). SS showed similar trend with turbidity, and the correlation coefficient between them was high (r=0.79), while correlation coefficient between SS and chl. a was not so high (r=0.59). Both sestonic C/N and C/P ratios were higher than those of Redfield ratio, but lower than the threshold values in Healey and Hendzel (1979, 1980) in all lakes studied. Sestonic N/P ratios in all lakes ranged 5-25, being higher than that in Redfield ratio, suggesting relatively high nitrogen loading to the lakes. NH₄-N and PO₄-P were quite high in YH and JI compared with those in other 4 lakes. PO₄-P at inlet tended to increase with increasing land use of rice paddy. Correlation analyses showed that chl. a in pelagic sites were positively correlated with PO₄-P at inlet. The differences in DIN and DIP between inlet and outlet were also larger in both YH and JI, indicating large consumption of them within the lakes. H’ in phytoplankton showed high values and large seasonal variability in KN, YH and JI, while not so high values and small seasonality in HI and KD, being negatively correlated with sestonic N/P ratios. On the contrary, H’ in zooplankton were almost the same among the lakes except for that in KD, showing no relationship between H’ and any sestonic C/N/P ratios.

Discussion
Chl. a was correlated with PO₄-P at inlet, which increased with increasing land use of rice paddy.
Therefore, phytoplankton biomass depended on land use of rice paddy around watershed of the lakes studied. Species diversity in phytoplankton seemed to decrease with increasing sestonic N/P ratio, but not in zooplankton. Probably, nutrient imbalance might affect phytoplankton diversity, while not apparently in zooplankton diversity, because other interaction like predation pressure might mask the bottom-up effect on zooplankton.

キーワード：栄養塩バランス、生物多様性、琵琶湖内湖
Keywords: Nutrient imbalance, biodiversity, small lagoon lakes around Lake Biwa
Biodiversity Assessment of Littoral Macrozoobenthos in Laguna de Bay, Philippines

*Ellis Mika Cruz Trino¹, Irisse Bianca Baldovino De Jesus¹,², Elfritzson Martin Peralta², Hazel Guerrero², Adelina Santos-Borja⁴, Francis Magbanua⁵, Jonathan Carlo Briones¹,²,³, Rey Donne Papa¹,²,³, Okuda Noboru⁶

1. The Graduate School, University of Santo Tomas, Manila, Philippines, 2. Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 3. College of Science, University of Santo Tomas, Manila, Philippines, 4. Laguna Lake Development Authority, East Ave, Diliman, Quezon City, Philippines, 5. Institute of Biology, University of the Philippines Diliman, Quezon City 1101, Philippines, 6. Research Institute for Humanity and Nature, Kyoto, Japan

Laguna de Bay is home to various macroinvertebrates which play an important part in freshwater ecosystems. These macroinvertebrates or macrozoobenthos participate in the decompositional pathways and interact with the fish and zooplankton communities in water systems. Due to their restricted mobility, they are crucial bioindicators that detect trends in pollutant concentrations and their biodiversity typically reflects changes in the local environment. Despite their ecological importance, macrozoobenthos are still understudied and researches conducted on the effects of changes in water physicochemistry on their communities remain to be poorly known in the Philippines. Thus, this study gathered samples of macrozoobenthos species from 33 littoral sites of Laguna de Bay to determine the richness and diversity of the macrozoobenthos species present in the lake. The results have recorded 6 identified families (Ampullaridae, Corbiculidae, Pachychilidae, Planorbidae, Thiaridae, and Viviparidae) of macrozoobenthos and one unidentified species. Computation of Shannon–Wiener index (H’) showed the highest diversity which was recorded from Pinagdilawan, Binangonan (H’ =1.20) while the lowest was in Pulong Ligaya, Bogombong, Jala-Jala (H’ =0.04). The output of this study serves as an update on the biodiversity of littoral macrozoobenthos present in Laguna de Bay.

Keywords: Laguna de Bay, Macrozoobenthos, Biodiversity, Shannon–Wiener index
亜寒帯深湖の熱環境と気候変動への応答：不凍化がもたらす生態系への影響評価

Thermal regime of a subarctic deep lake and its response to climate change: the non-freezing effect on the ecosystem

*知北 和久¹、大八木 英夫²、山根 志織⁶、相山 忠男³、板谷 利久⁴、岡田 操⁵
*Kazuhisa A. Chikita¹, Hideo Oyagi², Shiori Yamane⁶, Tadao Aiyama³, Toshihisa Itaya⁴, Misao Okada⁵

1. 北海道大学大学院理学研究院地球惑星科学部門、2. 日本大学文理学部、3. (株)福田水文センター、4. (株)シン技術コンサルタント、5. (株)水エリサーチ、6. 北海道大学理学部地球惑星科学科

ケッペンの気候区分によると、北海道は亜寒帯の南限に位置するが、存在する湖沼は2回循環の温帯湖に属する。この研究では、北海道の深湖である倶多楽湖（くったらこ）を例とし、最近の同湖の不凍化現象に着目して結氷・未結氷の熱的な臨界条件を決定し、併せて、将来の永年不凍化がもたらす生態系への影響評価を定量的に考え(Fig. 1)。ここでは、3年余の水温データ・水文気象データから、倶多楽湖の貯熱量変化の経年変動を得た。結果として、冬季の累積貯熱量変化が-500 W/m²以上であれば、倶多楽湖は完全結氷しないことがわかった。また、同貯熱量変化の気象要素に対する感度解析から、この湖は約20年後には永年不凍湖になると判断された。

キーワード：不凍化、貯熱量変化、気候変動、深湖
Keywords: non-freezing, heat storage change, climate change, deep lake
Fig. 1 Location of Lake Kuttara and observation sites on the bathymetry (water depth in m by dotted lines). The dashed dotted line shows a water divide of the lake.