Toward synthesis of watershed sciences

Noboru Okuda

1. Research Institute for Humanity and Nature

I organize this session for synthesis of watershed sciences, through which we aim to understand dynamical processes of interactions between organisms, nutrients and other materials in watersheds from mountain tops to receiving water. The session will be integrating a variety of research disciplines including limnology, pedology, ground water hydrology, sedimentology, coastal oceanography, meteorology, forestry, agriculture, fishery and more. The watershed sciences also challenge us to solve environmental issues emerged in the watersheds through our profound understanding of relations between humanity and nature in social-ecological systems. For instance, on one hand, human land uses alter dynamics of sediments, macro- and micro-nutrients and pollutants in soils and waters on catchment scales, while changing climates may alter the frequency and intensity of natural disaster, sometimes having catastrophic effects on the watershed systems. On the other hand, globalization causes transboundary pollution and biological invasion between watersheds. Such anthropogenic disturbances, in turn, reduce quality and quantity of natural resources in watersheds and coasts and thus deteriorate ecosystem services, posing a risk to sustainable human development. The dogma of watershed sciences may lead us to the solution for sustainable future of watershed systems as the basis of our existence. This session also calls for ideas on new methods for the watershed sciences, such as tracer and molecular technique, modeling and paleontological approaches, laboratory and field experiments, and so on, in order to elucidate biological, chemical and physical mechanisms for shedding light on natural phenomena and their changes over time in complex and dynamic watershed systems. Through this session, we would like to facilitate interdisciplinary collaboration among participants to create new knowledge on watershed sciences.

Keywords: Interdisciplinary science, Social-ecological system, Solution-oriented science, Sustainability, Watershed
Nutrient Dynamics in Watersheds

*Adina Paytan*¹

1. University of California Santa Cruz

Watersheds and the processes that take place within them are complex and important modulators of nutrients that ultimately drain into receiving water bodies like streams, rivers, lakes, wetlands and the coastal ocean impacting the aquatic ecosystems and the people that depend on them. It is essential to consider these processes and downstream impacts when developing and implementing water quality protection and restoration actions. In this presentation an overview of the sources and transformation of major nutrients (C, N and P) within a watershed and the processes that affect nutrient dynamics at various settings in a watershed along the drainage network will be presented with emphasis on innovative isotope tools to track nutrient dynamics.

Keywords: Watersheds, Nutrients, Isotopes
Trends in precipitation and stream water chemistry in a forested watershed in the Kanto region, Japan

*Masahiro Kobayashi¹, Shuichiro Yoshinaga¹, Yuko Itoh¹, Yoshiki Shinomiya¹, Shuhei Aizawa¹, Toru Okamoto¹, Tatsuya Tsurita¹

1. Forestry and Forest Products Research Institute

It is widely accepted that forested watershed play an important functional role in maintaining and improving water quality. It has been an important issue to investigate the effect of environmental change (e.g. atmospheric deposition, climate change) and forest management practice on the water chemistry of forested watersheds. For the above purpose, we have been monitoring rainwater and stream water chemistry over 14 years at a forested watershed in Ibaraki prefecture, Japan. In the period 2001 – 2014, the annual flux of precipitation nss-SO₄ tended to decrease. On the other hand, the annual flux of precipitation Inorg-N exhibited an increasing trend. Annual mean concentration of stream water SO₄ was almost constant in the period 2001-2011, increased after forest thinning operations conducted in 2012 and 2013. Annual mean concentration of stream water NO₃ tended to decrease before the thinning operations, and turned to increase after the operations. Similar increasing patterns after the thinning operations were observed in the concentrations of Ca and K. Stream water Si concentration exhibited very small fluctuation and tended to increase gently.

Keywords: Forest, water chemistry, monitoring
Long-term dynamics and future perspective of streamwater chemistry in forested headwater catchments

*Masanori Katsuyama¹, Nobuhito Ohte², Ken’ichi Osaka³

1. Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, 2. Graduate School of Informatics, Kyoto University, 3. School of Environmental Science, University of Shiga Prefecture

In Japan, rainfall patterns have been changing and extreme storm events are increasing as the effects of climate change. These events will cause some kinds of changes of hydrological and hydrochemical responses of the catchments. However, the responses may different depending on the attributes and/or background conditions of each catchment. In this study, we discuss about past, current, and future hydro-biogeochemical responses in a forested headwater catchment in Japan.

The observation was conducted in Kiryu Experimental Watershed (KEW). The area of KEW is 5.99 ha. The bedrock material is weathered granite, and the vegetation is Japanese Cypress planted about 60 years ago. Now, the forest is unmanaged, and it is the typical of Japanese artificial forest. We set up the nested catchments, K and M. The K catchment correspond to the whole of KEW, and the M catchment (0.68 ha) is one of a subcatchment of K. The observation have been conducting since 1972 for precipitation and discharge rate at K, and since 1990 for discharge rate at M and for streamwater chemistry at both catchments, respectively.

The number of rainy days is decreasing but days with larger rainfall intensity is increasing in KEW. The annual baseflow ratio is decreasing and annual direct runoff ratio is increasing at the K catchment as the result of the changing pattern of rainfall. The sediment transport at the K catchment was constrained by the erosion control dams, however, it abruptly increased since 2010 because overaged dams were damaged and destroyed by recent large precipitations.

The effects of rainfall patterns are unclear in the monthly streamwater chemistry. However, the chloride concentration is decreasing for decadal periods at both catchments. At the M catchment, the vegetation was disturbed at about 20% of catchment area around 1990, and the nitrate concentration was highest around 1997-1999, then gradually decreased till 2005. However, it is increasing again in recent 10 years. At the K catchment, the effects of disturbance occurred at the M catchment was not so clear, but it is also increasing in recent 10 years. The dynamics of the streamwater chemistry in recent 10 years may be a result of the forest degradation, that is, chloride shows the decrease of evapotranspiration and nitrate shows the decrease of nutrient uptake.

The direct runoff rate and nitrate load at dormant (Oct. to Mar.) and glowing (Apr. to Sep.) seasons were estimated and considered the relationship to the precipitation in each season for K catchment. The nitrate load was estimated using the power-law relationship of concentration (C) and discharge rate (Q). The direct runoff rate is larger in the glowing season, that is, in rainy season in Japan, and consequently the nitrate load also larger in the season. This fact means that the nitrate load is mainly controlled by the hydrological processes. Moreover, it is suggested that the increase of extreme storm events especially in summer may cause the explosion of nitrate export from the headwater catchment to the downstream.

For the future perspective under the climate change, forested headwater catchments will respond both hydrologically and biogeochemically. In our site, the solute transport mainly controlled by the hydrological responses. However, the forest degradation can cause the change of the biogeochemical condition, and it will be the base of the streamwater chemistry. Therefore, we need to keep on monitoring to detect these changes with the state-of-the-art techniques.
Keywords: long-term monitoring, streamwater chemistry, forested headwater catchment, hydrological processes, forest dynamics
Estimation of nutrients sources for surface and ground water in an abandoned meadow adjacent to mire area

*Toshikazu Kizuka1, Hidetoshi Mikami1, Satoshi Kameyama2, Satoru Ono1

1. Institute of Environmental Sciences, Hokkaido Research Organization, 2. Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies

Recently, abandoned meadows have been becoming evident due to their poor drainage and wet condition in the margins of the Kushiro Mire, eastern Hokkaido. Increase of abandoned meadows brings various negative impacts on the management of dairy farm and the rural landscape. Therefore, effective utilization of abandoned meadows is an important issue. Focusing on the water quality improvement function in wetlands, we are considering about the role of abandoned meadows as buffer zone between agricultural and mire areas. Objectives of the study are to examine (1) the present status of water quality in surface and ground water and (2) the nutrient sources from the spatial variations of water level and quality, and the nitrogen stable isotope ratio of groundwater, aiming the quantitative assessment for nutrient cycling function of abandoned meadows.

We set a plot of approximately 100 m×175 m surrounded by open drainage ditches at an abandoned meadow in Tsurui Village. The ground surface gently down from the north to the south and slightly down along the east and west drainage ditches. We comparted the plot into 28 cells of each 25 m×25 m. A well and three piezometers (30, 80, and 130 cm depths) were installed at the center of each cell. Surface and ground water at each piezometer, surface flowing water at the drainage ditches and adjacent rivers, and rain water were sampled in August and October of 2015 and about once a month from May to November of 2016. Water quality including EC, pH, DO, ORP, nitrogen and phosphorous concentrations was measured. Additionally, the concentrations of the stable isotope δ^{15}N were analyzed for the 30 cm depth groundwater at four point in the plot and two point in the riparian wetland of the adjacent river in November 2016. Water level was automatically recorded at a continuosly waterlogged point in the plot and drainage ditches on the north and south sides of the plot.

Water level was higher at the point in which ground elevation was slightly lower than the maximum point. Lower area on the east and southwest of the plot along drainage ditches was continuosly waterlogged. Water level measurement showed about 90 cm variation during investigation period. In the extreme flooding event of August 2016 by the continuous typhoons, backward flows were observed in the drainage ditches and the whole study plot was inundated.

The highest concentration of dissolved total nitrogen (DTN) was appeared at 30 cm depth groundwater in the center of the plot. Dissolved organic nitrogen (DON) and NH\textsubscript{4}-N represented large portions of the DTN. The highest concentration of dissolved total phosphorous (DTP) was appeared at 30 cm depth groundwater in the continuously waterlogged points along drainage ditches. Dissolved organic phosphorous (DOP) represented a large portion of the DTP. The concentrations of DTN and DTP of surface and ground water in the study plot were higher than those of drainage ditches and rivers. For the extreme flooding event of August 2016, the concentrations of DTN and DTP at surface water in the plot were higher than those for normal hydrological period. Dissolved inorganic nitrogen (DIN), mainly consist of NO\textsubscript{3}-N, represented about 60% of the DTN. PO\textsubscript{4}-P represented about 70% of the DTP. Every water quality variables were similar between surface water in the plot and the drainage ditches. Thus, the ditches’ water likely flowed into the study plot, affecting directly the water quality of the surface water in the plot.

Groundwater near the drainage ditches, which represented higher DTP concentration, showed relatively higher δ^{15}N values of 15-30\%. This suggests animal waste might to be a nutrients source. In contrast,
groundwater at the center of the plot, which represented higher DTN concentration, showed relatively lower δ^{15}N values of 5-8%. This suggests a different nutrients source exists at the center of the plot, becoming the major nitrogen source in the groundwater.

Keywords: nitrogen stable isotope, nutrient cycling function, peatland, spatial variation, waterlogging
Effect of tidal variation on sediment nutrient releasing from Osaka Bay.

*Guangzhe Jin¹, Shin-ichi Onodera¹, Mitsuyo Saito², Yusuke Tomozawa¹, Yuki Ohira¹

1. Graduate School of Integrated Arts and Science, Hiroshima University, 2. Graduate School of Environmental and Life Science, Okayama University

Understanding the nutrient discharge into the coastal area is important in environmental managing and eutrophication control. Nutrient releasing from coastal sediments has been considered to be a major resource contributing to coastal nutrient cycle, particularly in the tidal river mouth area. Due to the complicated physical/chemical mechanisms, it is difficult to quantify the nutrient releasing rate in these areas. Our objective is to clarify the processes of nutrients across the sediment-water interface affected by tidal pumping, internal diffusion flux, and flood events, based on onsite monitoring, lab experiments, and hydrological model simulations.

Several cores and surface sediment have been taken in September 2016 for laboratory incubation experiments. Sediment samples were used for incubation experiments with/without an additional pressure variation of 2 meters. Surface water and bottom water were also taken along the transaction line from the river mouth to open bay. Water samples were analyzed for nutrient contents and then releasing flux were calculated.

Results show that nutrient contents are higher in bottom water during falling tide while in surface water are higher during rising tide, represents the nutrient transport are mainly in surface layer with river discharge in falling tide with high sediment releasing flux. In rising tide, tidal movements prohibit the transporting of nutrient during and decrease the sediment releasing flux. Core pore water profile shows decreasing trend upwards in Nitrate, ammonium, and phosphate. It indicates a strong releasing pattern of nutrient from sediment. Incubation results show high releasing flux similar to the diffusion flux calculated from pore water concentrations. The tidal pumping can double the ammonium and phosphate releasing flux in one week periods.

Keywords: sediment, nutrient releasing, tidal pumping, sewage treatment plant
Nitrogen and phosphorus dynamics in two Japanese river networks with contrasting watershed land use

*Tomoya Iwata1, Takuya Hayashi2, Masanori Akashi2, Aya R. Murakami3, Noboru Okuda4

1. Faculty of Life and Environmental Sciences, University of Yamanashi, 2. Faculty of Engineering, University of Yamanashi, 3. Center for Ecological Research, Kyoto University, 4. The Research Institute for Humanity and Nature

Riverine transport of nitrogen and phosphorus from watersheds can be an important flux that affects the integrity of their downstream ecosystems. Thus, numerous nutrient-transport models have been developed to predict nitrogen and phosphorus flux from lands to the oceans. However, nutrient removal by stream ecosystems in the entire river network, from headwater streams to downstream rivers, has remained unknown. Here, we developed the nutrient transport models that explicitly incorporate stream ecosystem metabolism in order to understand the roles of in-stream processes (i.e., nutrient uptake) in controlling the nitrogen and phosphorus flux to downstream ecosystems.

We performed two field sampling campaigns covering the whole area of Yasu River and Ado River watersheds, central Japan, during September and October in 2012 and 2014, respectively. Both rivers are major tributaries of the Japan’s largest lake, Lake Biwa, with their watershed land-use patterns differing from each other significantly. Ado River watershed is characterized by forested vegetation with no strong anthropogenic impacts, while Yasu River watershed is composed of various land uses including urban development, agricultural fields (mostly rice paddies), and planted forests. In each watershed, we established a number of sampling sites in streams/rivers to measure discharge, nitrogen and phosphorus concentrations, and other physico-chemical variables. We then developed the modified version of spatially referenced process-based model (SPARROW) to describe the observed flux of nitrogen and phosphorus in the entire area of each river networks. In the models, we formulated the in-stream processes of N and P uptakes as kinetic equations of stream metabolism, which depends on water temperature, light, and/or substrate abundance.

In this presentation, we show the predictions by our models for the effects of watershed land uses on the amount of nitrogen and phosphorus exports by rivers. The model also predicts how land-use patterns, as well as other watershed attributes, affect the nutrient spiraling metrics: the estimates of areal uptake rates (U), uptake velocity (v_f) and uptake length (S_w) of nitrogen and phosphorus in the river ecosystems. The results clarify the nitrogen and phosphorus dynamics in river networks with contrasting watershed land use to emphasize that stream ecosystem function can alleviate the negative effects of watershed human activities on the nutrient transport to downstream river and lake ecosystems.

Keywords: SPARROW, spiralling metrics, river network
Quantification of phosphorus and nitrogen uptake in a tropical freshwater ecosystem in Southeast Asia suggests N limitation

*Irisse Bianca Baldovino De Jesus 1, Jonathan Carlo A Briones 1,2,3, Osbert Leo A Privaldos 5, Elfritzson Martin Peralta 2, Yoshitoshi Uehara 7, Takuya Ishida 7, Adelina Santos Borja 5, Francis S Magbanua 4, Rey Donne S Papa 1,2,3, Tomoya Iwata 6, Noboru Okuda 7

Nitrogen and phosphorus kinetics plays an essential role in the sustainability of watersheds but their increased availability also brings adverse impacts to water quality, species diversity, human health and ecosystem balance. This study reports on nitrogen limitation in headwater streams in Silang-Santa Rosa Subwatershed (SSRS). Moreover, this is the first attempt in studying nutrient spiralling in Philippine headwater streams using Tracer Addition for Spiralling Curve Characterization (TASCC). Phosphorus uptake kinetics showed shortest uptake length ($S_{amb} = 25.27m$), highest aereal uptake rate ($U_{amb} = 37.46 mg-P/m^2/min$) and uptake velocity ($V_{famb}=162.12 mm/min$) in an agricultural site and longest uptake length ($S_{amb} = 109.24m$), lowest aereal uptake rate ($U_{amb} = 0.31 mg-P/m^2/min$) and uptake velocity ($V_{famb}=2.76 mm/min$) in a residential site. Nitrogen uptake showed undetected peaks that is suspected as N limitation supported by significant correlations for U_{amb}-P and NH_3 ($R=0.919, 95%$) and N:P ratio (0.4923). Overall, this research aids in the Philippine land use planning and watershed management for ecological sustainability and serves as a contribution in tropical studies particularly in nutrient dynamics.

Keywords: Tracer Addition for Spiralling Curve Characterization, Philippines, nutrient dynamics
The quantitative evaluation of bio-available particulate phosphorus discharged from Yasu River.

*Ken'ichi Osaka¹, Shinsho Chishiro², Tomoya Iwata³, Noboru Okuda⁴

1. School of ecosystem study, University of Shiga Prefecture, 2. Graduate School of Environmental Science, University of Shiga Prefecture, 3. Faculty of Environmental Science, University of Yamanashi, 4. Research Institute for Humanity and Nature

It is well known that primary production in Lake Biwa is limited by phosphorus, and that means phosphorus load into Lake Biwa influence on its environment. In general, it is considered that algae in aquatic ecosystem use soluble reactive phosphorus (SRP) as a phosphorus source, however, it has been revealed that a part of particulate phosphorus (PP) also might be used as phosphorus source in recent study. It has been reported that PP discharge from watershed increases during ploughing and irrigating the fields or rainfall event, and most of the annual phosphorus load discharged through river is PP. Those mean that discharge of bio-available PP from watersheds has critical potential to control primary production in aquatic ecosystems. However, there are a few studies that clarify the sources and amount of bioavailable fraction of PP discharged from watersheds in Japan. The purpose of this study is to estimate sources and amount of bioavailable fractions of PP discharged from Yasu river watersheds.

River water samples were collected in 5 sites in Yasu river from one to four weeks interval from April 2014 to May 2015. Drainage from paddy fields were collected from Koka city, where locates in middle part of Yasu river watershed 3 times from May 2015 to July 2015. River water during rainfall events was also collected at 2 times in down stream site and 1 time in up stream forested site in Yasu river watersheds. We separated several fractions of PP from suspended sediment (SS) by sequential extraction methods (1M ammonium chloride, 0.11M bicarbonate dithionite (BD), 1M NaOH, 0.5M HCl extraction) in water sample. SRP extracted from the particle fraction was determined by the molybdenum-blue method. We assumed that SRP extracted by ammonium chloride (NH₄Cl-SRP) and bicarbonate dithionite (BD-SRP) were bio-available PP because NH₄Cl-SRP release SRP in low SRP concentration environment and BD-SRP release SRP in reductive condition.

PP concentrations in Yasu river were higher during ploughing period and rainfall events. BD-SRP was dominant in base-flow in Yasu river, however NH₄Cl-SRP was also important in small rainfall event (15.5 mm) at ploughing period, and non reactive phosphorus (NRP) extracted by NaOH (NaOH-NRP) was also important at large rainfall (97 mm) in August. We will discuss the source of these fraction of PP and estimate the amount of discharge rate of those.

Keywords: particulate phosphorus, bioavailability, watersheds
Biogeochemical cycling of phosphate in the Yasu River Watershed: Insight from oxygen isotope of phosphate

*Takuya Ishida¹, Yoshitoshi Uehara¹, Tomoya Iwata², Osberet Privaldos³, Satoshi Asano¹, Tohru Ikeya¹, Ken’ichi Osaka⁴, Jun’ichiro Ide⁵, Ichiro Tayasu¹, Noboru Okuda¹

1. Introduction
Phosphorus (P) is an essential element for all living organisms and can be a limiting factor for primary production in river ecosystems. Therefore, its biogeochemical cycling is very important in proper land management and understanding of natural systems. Recently, oxygen isotope ratio of phosphate (δ¹⁸OPO₄) has been used as a tool to elucidate the P cycle. Previous studies showed the possibility to evaluate P sources, metabolism by organism in some ecosystems (Paytan & McLaughlin 2011). However, there are few research to show the spatial distribution of δ¹⁸OPO₄ in the watershed scale, and it is not clear whether δ¹⁸OPO₄ is useful for evaluating the biogeochemical cycling of P in the watershed scale. The purposes of this study are to show the δ¹⁸OPO₄ distribution in the watershed scale and to examine the relationship between δ¹⁸OPO₄ distribution and environmental factors, such as P sources, land use and physical characteristics of a river.

2. Material and Method
The investigation was conducted in the Yasu River Watershed in Shiga prefecture, central Japan. River water samples were collected at 15 sites including tributaries in May 2016. As a P source to the river, rocks (granite, sedimentary rock, accretionary complex), soils from forest and paddy filed, chemical fertilizers mainly used in Shiga prefecture and wastewater treatment plant water were collected. For δ¹⁸OPO₄ analysis, phosphate in all samples was converted to silver phosphate by McLaughlin et al. (2004) procedure with solid phase extraction method to remove dissolved organic matter. The δ¹⁸OPO₄ values were measured by a TC/EA-IRMS (thermal conversion elemental analyzer connected to a Delta plus XP isotope ratio mass spectrometer via ConFlo III, Thermo Fisher Scientific). The δ¹⁸OPO₄ Values of biologically cycled phosphate (δ¹⁸OPO₄Eq) in the river water samples were calculated by Eq. 1 (Longinelli & Nuti 1973):

\[T = 111.4 - 4.3 \left(\delta^{18}O_{PO_4} - \delta^{18}O_w \right) \] (1)

Where T is water temperature (°C); δ¹⁸OPO₄ and δ¹⁸Ow are the δ¹⁸O of phosphate and water, respectively.

3. Result and discussion
The δ¹⁸OPO₄ values in the river water samples ranged from 10.1‰ to 17.8‰. These values were different from the δ¹⁸OPO₄Eq values at each site, indicating that the δ¹⁸OPO₄ values in river water samples can be used as a tracer for P sources in the Yasu River Watershed. Significant correlations were found between the δ¹⁸OPO₄ values in river water and the proportion area of the agricultural land and each rock. In addition, the direction of the regression line agreed with the δ¹⁸OPO₄ values in soil from paddy filed and each rock. These data suggest that agricultural land and rocks are main P sources to the river. Our investigation showed that the δ¹⁸OPO₄ is useful for evaluation of biogeochemical cycling of P in the watershed scale.
Reference

Keywords: Oxygen isotope of phosphate, Freshwater system
Comparisons of oxygen isotope ratio of phosphate in river water and rocks between two watersheds in central Japan

*Jun’ichiro Ide 1, Abigail P. Cid-Andres 2, Takuya Ishida 3, Ken’ichi Osaka 4, Tomoya Iwata 5, Takuya Hayashi 5, Masanori Akashi 5, Ichiro Tayasu 3, Noboru Okuda 3

1. Institute of Decision Science for a Sustainable Society, Kyushu University, 2. Osaka University, 3. Research Institute for Humanity and Nature, 4. Department of Ecosystem Studies, University of Shiga Prefecture, 5. Faculty of Life and Environmental Sciences, University of Yamanashi

Excess phosphorus (P) utilization by human activities has resulted in a large amount of P loss from terrestrial to aquatic ecosystems, which in turn can induce eutrophication and subsequently algal bloom in enclosed waters. To control the P loss, the phosphate oxygen isotope ratio (δ 18O P) technique is expected to be applied for clarifying P dynamics in terrestrial ecosystems. This is because δ 18O P in river water could reflect sources of phosphate within the river watershed. However, very few studies have applied the δ 18O P technique to clarifying watershed-scale P dynamics and thus little information is available about what the river δ 18O P value indicates specifically within the watershed. To examine this, we compared the δ 18O P values in river water and rocks between two watersheds with different land-use and geological compositions. For this, we collected river water and rock samples and analyzed their δ 18O P in subwatersheds of the Ado River and the Yasu River watersheds, which were dominated by forests and covered by large areas of agricultural lands, respectively, belonging to the Yodo River system in central Japan. The river δ 18O P value was significantly higher in the Ado River watershed than in the Yasu River watershed (u-test, p < 0.05). This could not be explained by the forest area ratio within a subwatershed. The relationship between river δ 18O P values and subwatershed areas revealed that the δ 18O P value tended to increase and reach a plateau as the subwatershed area increased. Additionally, the result showed that the river δ 18O P value was higher in the Ado River watershed than in the Yasu River watershed at a given subwatershed area. These findings are attributable to the fact that high values of δ 18O P in river water could derive from those in the accretionary complex. This is because geological compositions in the subwatershed with large area (10 km²) contain the accretionary complex in the Yasu River watershed and also because geology in the Ado River watershed is composed mostly of the accretionary complex. On the other hand, the river δ 18O P value could change not only by the geological factor, but also by biologic uptake of phosphate. It is possible that changes in the river δ 18O P value with the subwatershed area resulted partly from an increase in the opportunity for the biologically-mediated oxygen isotope exchange between water and phosphate associated with the increased river length.

Keywords: Stable isotope analysis, Source of phosphate, Diffuse pollution, Lake Biwa, Accretionary complex
Transportation mechanism of arsenic (As), cesium (Cs) with iron (Fe) from river to paddy rice through irrigation in river water system

*Shinji Nakaya¹, Mistunori ISHIKAWA¹, Kengo MURODA¹, Harue Masuda²

1. Department of Water Environment and Civil Engineering, Faculty of Engineering, Shinshu University, 2. Osaka City University

Some toxic trace elements are often transported to paddy field through irrigation from river water. The transportation mechanism of toxic trace elements in a local river water system is important for sustainable, environmental conservation and for risk reduction. In order to clarify the transportation process on As and Cs in the grain of paddy rice, we analyzed the concentrations of trace and major elements in three river waters, paddy field waters, and paddy rice, root, shoot, leaf, and grain, and paddy soil, separately, in three areas. From the complex relationships between As and Fe, and Cs and Fe in various situations, it is inferred that Fe works as an attracter to As and Cs within paddy rice, though these elements are often transported in river water, separately. The As and Fe in rice grain correlates with Fe in paddy water, while they are not correlates with Fe in paddy soil, suggests the As in rice grain comes from river water through irrigation. The Cs in rice grain correlates with Cs in paddy water, indicates Cs comes from river water through irrigation.

Keywords: As, Cs, river, paddy rice, Fe
Denitrification in the banks of fluctuating rivers: the effects of river stage amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow

*Pin Shuai¹, Meinhard Bayani Cardenas², Peter S.K. Knappett¹, Philip C. Bennett², Bethany T. Neilson³

¹. Texas A&M University College Station, 2. University of Texas, Austin, 3. Utah State University

Hyporheic exchange induced by periodic river fluctuations leads to important biogeochemical processes, particularly nitrogen cycling, in riparian zones (RZs) where chemically distinct surface water and groundwater mix. Based on field observations, we developed a two-dimensional coupled flow, reactive transport model to study the influence of river fluctuations on nitrogen cycling within the RZ during a single 24 h pulse. Sensitivity analyses were conducted to quantify the effects of river amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow on nitrate removal efficiency. The simulations showed that nitrification occurred in the shallower zone adjacent to the bank where oxic river water and groundwater interacted while denitrification occurred deeper into the aquifer and in the riverbed sediments where oxygen was depleted. River fluctuations greatly increased the amount of nitrate being removed; however, the removal efficiency, the ratio of the mass of nitrate being removed due to denitrification and the total mass of nitrate entering aquifer, decreased as river amplitude increased. Similarly, increasing hydraulic conductivity increased overall nitrate removal due to a large denitrifying zone but with decreasing efficiency. In contrast, increasing sediment dispersivity increased the removal efficiency of nitrate. The presence and direction of ambient groundwater flow had a significant impact on nitrate removal efficiency when compared to neutral conditions. A losing river showed smaller removal efficiency (3.5%) while a gaining river showed larger removal efficiency (17.1%) compared to neutral conditions (5.4%). Our results demonstrated that daily river fluctuations created denitrification hot spots within the RZ that would not otherwise exist in a neutral or gaining conditions under natural baseflow.

Keywords: Riparian Zone, Denitrification, River fluctuation
Nitrogen cycling within a riparian zone

Driven by hydropeaking

River level

Groundwater table

DOC, DO, \(\text{NO}_3^- \), \(\text{NH}_4^- \)

Hyporheic zone

Aerobic zone

Anaerobic zone

Riparian aquifer

1. Aerobic respiration: \(\text{CH}_2\text{O} + \text{O}_2 \rightarrow \text{H}_2\text{O} + \text{CO}_2 \)
2. Nitrification: \(\text{NH}_4^+ + 2\text{O}_2 \rightarrow \text{NO}_3^- + \text{H}_2\text{O} + 2\text{H}^+ \)
3. Denitrification: \(5\text{CH}_2\text{O} + 4\text{NO}_3^- + 4\text{H}^+ \rightarrow 7\text{H}_2\text{O} + 5\text{CO}_2 + 2\text{N}_2 \)
Land-use patterns in watershed influence denitrification process in stream sediment

Hojeong Kang

1. Yonsei University

Land-use patterns can affect various nutrient cycles in stream ecosystems, but little information is available on their effects on denitrification processes at the watershed scale. In the presented study, we investigated the controlling factors of denitrification rates within streams of the Han River Basin, Korea with different land-use patterns in order to enhance the effectiveness of water resource management strategies. Ten small watersheds were classified into three land-use patterns (forested, agricultural and urban) using satellite images and a geographic information system technique, and in-situ denitrification rates were determined using an acetylene blocking method. Additionally, sediment samples were collected from each stream to analyze denitrifier communities (T-RFLP) and abundances (real time qPCR) targeting nirS and nosZ genes. In-situ denitrification rates were found to be in the order of agricultural streams (289.6 mg N$_2$O-N m$^{-2}$ d$^{-1}$) > urban streams (157.0 mg N$_2$O-N m$^{-2}$ d$^{-1}$) > forested streams (41.9 mg N$_2$O-N m$^{-2}$ d$^{-1}$). The quantity of nirS genes was the highest but that of nosZ genes was the lowest in agricultural streams. In contrast, genetic diversity of denitrifying genes was not affected by watershed land-use patterns, but exhibited stream-dependent patterns. While land-use pattern is the most prominent evaluator for the denitrification rates at a landscape scale, other factors such as clay content, DOC and temperature are as important at a local scale.

Keywords: Denitrification, Land use patterns, Microbial communities, Stream
Bacterial community composition and richness in biofilms of the Yasu and Ado Rivers

*Shohei Fujinaga¹, Yuki Kobayashi², Aya R. Murakami¹, Masayuki Ushio¹, Uhram Song³, Ichiro Tayasu⁴, Naoto F. Ishikawa⁵, Junichi Okano¹, Chia-Ying Ko⁶, Hiroyuki Togashi⁷, Yoichiro Sakai⁸, Masayuki Itoh⁹, Nobuhito Ohte¹⁰, Shin-ichi Nakano¹, Tomoya Iwata¹¹, Noboru Okuda⁴

1. Center for Ecological Research, Kyoto University, 2. Yamaguchi University Graduate School of Medicine, 3. Department of Biology, Jeju National University, 4. Research Institute for Humanity and Nature, 5. Eidgenössische Technische Hochschule Zürich, 6. Institute of Fisheries Science, National Taiwan University, 7. Tohoku National Fisheries Research Institute, Fisheries Research Agency, 8. Lake Biwa Environmental Research Institute, 9. Center for Southeast Asian Studies, Kyoto University, 10. Department of Social Informatics, Graduate School of Informatics, Kyoto University, 11. Faculty of Life and Environmental Sciences, University of Yamanashi

Biofilm bacteria play important roles in the biogeochemical cycling of river ecosystems through processes such as accumulation, decomposition, and assimilation of organic matter. Although bacterial community compositions (BCCs) have previously been reported, factors determining their spatial distribution patterns are still poorly understood. It is difficult to disentangle confounding factors affecting the BCCs in stream/river biofilms due to the high spatial correlation among environmental variables within stream networks. In this study, we focused on BCC variations within and between tributaries of two rivers which have different land use patterns in their catchments in order to evaluate the relative importance of geographical and local habitat variables on BCCs.

Samples were collected from several tributaries in the Yasu and Ado Rivers draining into the Lake Biwa, Japan. Five stones were collected at each site and biofilm was detached from 6 cm square surface of each stone for DNA extraction. The extracted DNA was sequenced on Illumina MiSeq and clustered into operational taxonomic units (OTUs) at a 97 % sequence similarity level. Environmental parameters were measured and separated into two categories: geographical variables (altitude, catchment area, and land use) and local habitat variables (river depth, current velocity, water temperature, canopy openness, electric conductivity, total nitrogen, and total phosphorus).

8,547 OTUs were obtained after rarefying reads to the lowest coverage of reads and Bacteroidetes, Alphaproteobacteria, Betaproteobacteria and Cyanobacteria, all of which has been often regarded as common taxa in river biofilms, dominated in both rivers. BCCs were significantly different at the catchment scale between Yasu and Ado Rivers (PERMANOVA, p < 0.001). When the data from both rivers were pooled, two local habitat factors, water temperature and electric conductivity, significantly accounted for the dissimilarity of BCCs in both rivers (Mantel test, p < 0.001). However, when the data were analyzed separately between the two rivers, neither geographical nor local habitat factors significantly determined the spatial variation of BCCs within the river network system (PERMANOVA, p > 0.05 and Mantel test, p > 0.05). In both rivers, bacterial richness decreased with increasing current velocity (Spearman rank test, p < 0.01).

Our data suggest that (1) BCCs across Yasu and Ado River watersheds are more influenced by local habitat factors than by geographic factors; and (2) physical disturbance by high current velocity could be a primary factor affecting bacterial diversity in biofilms of river ecosystems.

Keywords: Freshwater, Microbe, Biofilm
Alpha and beta diversity of benthic macroinvertebrates in natural and disturbed river watersheds and their environmental driver

*Chia-Ying Ko¹, Tomoya Iwata², Jun-Yi Lee³, Aya Murakami⁴, Junichi Okano⁴, Naoto Ishikawa⁵, Yoichiro Sakai⁶, Ichiro Tayasu⁷, Masayuki Itoh⁶, Uhram Song⁹, Hiroyuki Togashi¹⁰, Shinich Nakano⁴, Nobuhito Ohte¹¹, Noboru Okuda⁷

Knowledge about habitat transformation and disturbance of wildlife is important for concern in biodiversity conservation. The number of species coexisting in ecological communities between different levels of disturbance and how it contributes to species diversity due to symbiotic dependencies with environments is little to be known in freshwater ecosystems. We estimated alpha and beta diversity of benthic macroinvertebrates and relationships between species diversity and environmental predictor variables by sampling the diversity of local sites in Ado River (natural) and Yasu River (intermediate disturbance) watersheds, Japan, separately. The alpha diversity was consistently slightly higher in the natural system than in the intermediate disturbed system but was not equivalent in their spatial distributions. The opposite pattern was evidenced for the beta diversity assemblages. The values of species richness and abundance showed a highly linear positive correlation, except that alpha richness and abundance in Yasu River watershed consisted of the bell-shaped correlation. Significant differences on environmental variables between two watersheds were exhibited, especially high chlorophyll a concentration detected in the intermediate disturbed system. The alpha diversity were not correlated with similar environmental variables whereas water temperature and chlorophyll a concentration a concentration across sites were the two most significantly important predictor variables for beta diversity in the two river watershed systems. These results suggest that patterns of local and regional diversity in freshwater benthic macroinvertebrate communities are differently influenced by levels of disturbance, which may benefit to increasing species diversity than previously thought through generating habitat heterogeneity processes, and understanding how both alpha and beta diversity vary with disturbance and how they relate to environments is essential for protecting local to regional diversity and can directly assist conservation planning.

Keywords: Benthic macroinvertebrates, Disturbance, River watershed, Biodiveristy, Environmental driver
Benthic macroinvertebrates response to water quality and canopy cover of a heavily impacted tropical subwatershed

*Elfritzson Martin Peralta¹, Leocris Batucan⁴, Yoshitoshi Uehara⁶, Takuya Ishida⁶, Yuki Kobayashi⁶, Chia-Ying Ko⁷, Tomoya Iwata⁸, Adelina Borja⁵, Jonathan Carlo Briones¹,²,³, Rey Donne Papa¹,²,³, Francis Magbanua⁴, Noboru Okuda⁶

Benthic macroinvertebrates have been shown to respond to varying degrees of physicochemical changes in freshwater ecosystems. However, studies on the assemblages and how these macroinvertebrates respond to changes in environmental factors are poorly understood in a tropical, archipelagic setting. Such changes have potential adverse effects on stream macroinvertebrates but we do not know if the same pattern may be observed in the streams of Silang-Santa Rosa Subwatershed (SSRS). Thus, we are testing this hypothesis in the SSRS which is an ideal representative for the tropical scenario. This study investigated stream benthic macroinvertebrates in the SSRS, which has recently been shown to have changed its land cover due to conversion of farmlands into non-agricultural uses and further urbanization.

On November 2015, 13 sites were sampled for benthic macroinvertebrates and monitored for environmental variables such as canopy openness, pH, water temperature, dissolved oxygen (DO), total dissolved solids (TDS), conductivity, salinity, nitrates, ammonia, dissolved inorganic phosphates (DIP), and total phosphorus (TP). Biodiversity indices and biomonitoring metrics were calculated and analyzed along with environmental variables. Results of both principal component analysis and hierarchical cluster analysis indicated differences in environmental variables among land cover categories. First principal component described a gradient from primarily vegetated sites (agricultural or residential land uses) with relatively good water quality to primarily non-vegetated sites (residential or industrial land uses) with poor water quality. Primarily vegetated sites generally exhibited relatively high DO and nitrates while primarily non-vegetated sites showed high canopy openness, ammonia, TP, conductivity, salinity and TDS. Canopy openness, conductivity, DO, and water nutrients appeared to be the most important factors predicting benthic macroinvertebrate assemblages. Sensitive genera from Ephemeroptera, Trichoptera, and Coleoptera dominated primarily vegetated sites while tolerant blood worms, Chironomus sp., were abundant in primarily non-vegetated sites. Benthic macroinvertebrate assemblages respond to anthropogenic changes which can be observed among nutrient-densed tropical stream ecosystems such as Silang-Santa Rosa Subwatershed. This paper highlights the potential of these macroinvertebrates together with water quality parameters for biomonitoring purposes and conservation initiatives in such heavily impacted subwatershed.

Keywords: Philippines, biomonitoring, canopy openness, land use, water chemistry, tropical streams
Mesozooplankton, a key transporter of anthropogenic nutrients from headwaters to the coastal ocean in a highly urbanized drowned river valley estuary.

Daniel P Harrison

1. University of Sydney

I will present the results of a 12 month study in which we sought to elucidate the relationship between anthropogenic nutrient inputs and mesozooplankton community structure in an urbanized, temperate, drowned river valley estuary system. Sydney Estuary on the East coast of Australia receives pulsed nutrient inputs primarily through storm water runoff from its highly urbanized (80%) catchment, with the majority of loading introduced through three head waters. Despite the relatively short distance from headwaters to mouth (15-30km) little of the introduced nutrient is transported directly to the coastal ocean. Instead the majority of the nutrient is assimilated into the estuarine food web exerting bottom up control on zooplankton community size structure and abundance. Our results using stable isotope analysis indicate the role of mesozooplankton in assimilation of anthropogenic nutrients and carbon varies on a gradient from the estuarine headwaters to the coastal ocean. It has been previously hypothesized that the coastal ocean acts as a source of mesozooplankton, supporting the productive fisheries and biodiversity of the lower harbour. We show the inverse to be true, in the more impacted upper estuary nutrients are incorporated into phytoplankton biomass which is eventually consumed by mesozooplankton in the middle and lower estuary. As zooplankton abundance greatly exceeds demand from predation within the harbor, the mesozooplankton provide a significant transport of N & C to the coastal ocean, presumably contributing to the diet of coastal ocean zooplanktivores.

Keywords: Mesozooplankton, Stable Isotopes, Biogeochemistry, Fisheries, Anthropogenic Nutrients, Urbanization
Spatial Variation in Lacustrine Groundwater Discharge (LGD) as a Nutrient Source in Lake Biwa, Japan

*Shin-ichi Onodera¹, Mitsuyo Saito², Syuhei Ban³, Guangzhe Jin¹, Yusuke Tomozawa¹, Noboru Okuda⁴

1. Graduate School of Integrated and Arts Sciences, Hiroshima University, 2. Graduate School of Environmental and Life Science, Okayama University, 3. The University of Shiga Prefecture, 4. Research Institute for Humanity and Nature

Groundwater discharge and nutrient flux into a lake has not been confirmed enough in terms of spatial variation including those in deeper zone. Biwa Lake has different characteristics between in northern and southern. In northern, the water depth varies up to 100m, groundwater discharge is also expected not only in beach sides with shallower depth but in deeper zones. We examined to indicate spatial variation of Rn-222 and to compare with the results of seepage observations by Kobayashi (1993).

Radon radioisotope (Rn-222) concentrations were measured by a RAD7 at 500 m interval along the whole shoreline of the northern lake, and surface water samples were coincidently collected. Oxygen stable isotope ratio (δ¹⁸O), Chloride anion and nutrients (nitrogen, phosphorus, and silicon) concentrations were measured in the laboratory in order to evaluate inflow of the groundwater into the lake. Those dissolved materials were also measured from the groundwater samples were collected in ca. 20 wells situated along the shore of the lake as well as those in river waters. In the eastern coast (Hikone), artesian groundwater was also collected because of aquiclude at 10m deep under the ground. Lake waters at the surface, middle and bottom layers and interstitial waters in the bottom sediments were collected for measuring Rn-222 concentrations.

At the both sites of Yasu and Takashima, high pressures of groundwater indicated flow of the water to the lake under the ground. Spatial distributions in Rn-222, Cl⁻ and nutrient concentrations with those in δ¹⁸O along the coasts also indicated discharges of groundwater into the lake. High concentrations of dissolved phosphorus phosphate (> 0.1ppm) were detected from several wells out of 15 ones investigated. Based on the comparative results with the seepage observations, we could confirm good correlation between Rn-222 concentration and seepage observation results.

In addition, Rn-222 concentrations in lake waters were measured in the surface and bottom layers at the 4 stations with different water depths (5m, 10m and 20m) in October 2015 and July 2016. The highest Rn-222 was observed in the bottom layer at 20m-deep site in both periods. The concentration was more than 2-fold of that in the littoral site. It suggests high possibility of deep-LGD from offshore lake floor.

Keywords: lacustrine groundwater discharge, phosphorus, radon
Spatial evaluation of submarine groundwater discharge (SGD) on an island scale in a temperate coastal sea

*Mitsuyo Saito¹, Aiping Zhu²³, Shin-ichi Onodera², Guangzhe Jin², Yuta Shimizu⁴, Kenji Okubo¹

1. Graduate School of Environmental and Life Science, Okayama University, 2. Graduate School of Integrated Arts and Science, Hiroshima University, 3. School of Geography and Planning, Sun Yat-sen University, 4. National Agriculture and Food Research Organization Western Region Agricultural Research Center

Submarine groundwater discharge (SGD) is defined as subsurface water flow at continental margins from the seabed to the coastal ocean. As a component of the hydrological cycle, SGD plays an important role in the overall coastal water budget, which can rival or even exceed surface runoff in some coastal areas. In addition, because it often contains higher nutrients than river water, SGD delivers comparatively large quantities of nutrients to coastal ecosystems. However, there are few studies to evaluate the spatial relation among SGD, nutrient condition and coastal ecosystem such as seagrass meadows. In the present research, we aimed to examine the spatial variation of SGD and its effect on coastal environment in an island scale.

The study area is Ikuchijima Island in Seto Inland Sea, southern Japan. The regional climate is mild, with an annual mean precipitation of 1,100 mm and temperature of 15.6 °C. The whole island is characterized by steep slopes and is widely covered by citrus farms with more than 40% of the island. To evaluate the spatial distribution of SGD at the small island scale, we performed a radon (²²²Rn) monitoring survey along the coastline of Ikuchijima Island. Large variability in SGD was observed, with significant discharges seen in areas of steep topography and much lower discharges from low-lying areas. Topographic influences are likely to be the major driver of spatial variability in SGD. Based on a ²²²Rn mass balance model, the SGD rates were estimated to range from 8.38 cm d⁻¹ to 17.02 cm d⁻¹, with an average of 12.98 cm d⁻¹. The results were in good agreement with SGD estimated by the topographic model based on Darcy’s law and inland topographic gradient near the coastline. Estimated nutrient loading through the SGD were comparable to or even higher than that from local streams. It suggests SGD is an important source of nutrients to coastal ecosystems in the area. Distribution of seagrass meadows tend to correspond totally to the spatial variation of SGD, especially the fresh submarine groundwater discharge (FSGD) estimated by the topographic model.

Keywords: submarine groundwater discharge, island, nutrient, seagrass meadows
Nutrient imbalance and diversity of plankton community in lagoon lakes around Lake Biwa

*Syuhei Ban¹, Shunpei Doi¹, Michikusa Tachibana¹, Xin Liu¹

¹. The University of Shiga Prefecture

There were a lot of environmental problems during the past eutrophication period in Japan. The situation has been improved after 1980’s due to reduction of N and P loadings from point sources. However, potential fluxes of N from atmosphere and farmland may cause N/P imbalance in several aquatic environments, though there are no clear evidences how such nutrient imbalance influences aquatic ecosystems until now. In this study, we determined dissolved nutrients and sestonic C/N/P ratios in several lagoon lakes around Lake Biwa, the largest lake in Japan, and species composition of phyto- and zooplankton living there, to evaluate effects of the nutrient imbalance on diversity of plankton.

Methods
Field observations were made at Lakes Kohoku-nodanuma (KN), Hasu-ike (HI), Katada-naiko (KD), Yanagi-hirako (YH), Jinjo-numa (JI), Hamabun-numa (HN) in August and October 2014, February, May, and July 2015. >70% of land use in 4 lakes out of 6 was rice paddy except for KD (17%) and HI (52%). Water samples for chemical analyses and phytoplankton counts were collected at outlet, inlet and two pelagic sites in each lake. Zooplankton was collected with a 40-μm-mesh, and then preserved with 4-5% sugar-formalin. Water temperature, pH, EC and turbidity were measured with a Horiba U-50. The water samples were filtered in the laboratory. Nutrients (NH₄-N, NO₃-N, NO₂-N and PO₄-P) for the filtrates were measured. Suspended solid (SS), sestonic C, N, P and chlorophyll a concentration (chl. a) for the residuals were measured. Phyto- and zooplankton species in each preserved plankton samples were counted, and then diversity indices (H’) were calculated.

Results
Water temperatures seasonally varied 10-29°C in all lakes studied. Chl. a largely varied with lakes, and lowest in HI (<15 μgL⁻¹) while highest in YH and JI (40-60 μgL⁻¹). SS showed similar trend with turbidity, and the correlation coefficient between them was high (r=0.79), while correlation coefficient between SS and chl. a was not so high (r=0.59). Both sestonic C/N and C/P ratios were higher than those of Redfield ratio, but lower than the threshold values in Healey and Hendzel (1979, 1980) in all lakes studied. Sestonic N/P ratios in all lakes ranged 5-25, being higher than that in Redfield ratio, suggesting relatively high nitrogen loading to the lakes. NH₄-N and PO₄-P were quite high in YH and JI compared with those in other 4 lakes. PO₄-P at inlet tended to increase with increasing land use of rice paddy. Correlation analyses showed that chl. a in pelagic sites were positively correlated with PO₄-P at inlet. The differences in DIN and DIP between inlet and outlet were also larger in both YH and JI, indicating large consumption of them within the lakes. H’ in phytoplankton showed high values and large seasonal variability in KN, YH and JI, while not so high values and small seasonality in HI and KD, being negatively correlated with sestonic N/P ratios. On the contrary, H’ in zooplankton were almost the same among the lakes except for that in KD, showing no relationship between H’ and any sestonic C/N/P ratios.

Discussion
Chl. a was correlated with PO₄-P at inlet, which increased with increasing land use of rice paddy. Therefore, phytoplankton biomass depended on land use of rice paddy around watershed of the lakes studied. Species diversity in phytoplankton seemed to decrease with increasing sestonic N/P ratio, but
not in zooplankton. Probably, nutrient imbalance might affect phytoplankton diversity, while not apparently in zooplankton diversity, because other interaction like predation pressure might mask the bottom-up effect on zooplankton.

Keywords: Nutrient imbalance, biodiversity, small lagoon lakes around Lake Biwa
Biodiversity Assessment of Littoral Macrozoobenthos in Laguna de Bay, Philippines

*Ellis Mika Cruz Trino¹, Irisse Bianca Baldovino De Jesus¹,², Elfritzson Martin Peralta², Hazel Guerrero², Adelina Santos-Borja⁴, Francis Magbanua⁵, Jonathan Carlo Briones¹,²,³, Rey Donne Papa¹,²,³, Okuda Noboru⁶

1. The Graduate School, University of Santo Tomas, Manila, Philippines, 2. Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 3. College of Science, University of Santo Tomas, Manila, Philippines, 4. Laguna Lake Development Authority, East Ave, Diliman, Quezon City, Philippines, 5. Institute of Biology, University of the Philippines Diliman, Quezon City 1101, Philippines, 6. Research Institute for Humanity and Nature, Kyoto, Japan

Laguna de Bay is home to various macroinvertebrates which play an important part in freshwater ecosystems. These macroinvertebrates or macrozoobenthos participate in the decompositional pathways and interact with the fish and zooplankton communities in water systems. Due to their restricted mobility, they are crucial bioindicators that detect trends in pollutant concentrations and their biodiversity typically reflects changes in the local environment. Despite their ecological importance, macrozoobenthos are still understudied and researches conducted on the effects of changes in water physicochemistry on their communities remain to be poorly known in the Philippines. Thus, this study gathered samples of macrozoobenthos species from 33 littoral sites of Laguna de Bay to determine the richness and diversity of the macrozoobenthos species present in the lake. The results have recorded 6 identified families (Ampullariidae, Corbiculidae, Pachychilidae, Planorbidae, Thiariidae, and Viviparidae) of macrozoobenthos and one unidentified species. Computation of Shannon–Wiener index (H’) showed the highest diversity which was recorded from Pinagdilawan, Binangonan (H’ =1.20) while the lowest was in Pulong Ligaya, Bogombong, Jala-Jala (H’=0.04). The output of this study serves as an update on the biodiversity of littoral macrozoobenthos present in Laguna de Bay.

Keywords: Laguna de Bay, Macrozoobenthos, Biodiversity, Shannon–Wiener index
Thermal regime of a subarctic deep lake and its response to climate change: the non-freezing effect on the ecosystem

*Kazuhisa A. Chikita1, Hideo Oyagi2, Shiori Yamane6, Tadao Aiyama3, Toshihisa Itaya4, Misao Okada5

According to the Köppen-Geiger climate classification, the Hokkaido Island, Japan, belongs to the southernmost subarctic area, but lakes in Hokkaido belongs to dimictic, temperate ones. This research focuses on non-freezing of a temperate deep lake, Lake Kuttara, Hokkaido, and its effect on the ecosystem (Fig. 1). Using 3-yr water-temperature and hydrometeorological data, we got the intra- and interannual changes of the heat storage. As a result, it is seen that, if accumulated heat storage change is more than -500 W/m2, the lake could be unfrozen. The sensitivity analysis to main meteorological factors indicates that an increase in air temperature is most effective to an increase in the heat storage change, and that the lake could be eternally unfrozen in a few decades.

Keywords: non-freezing, heat storage change, climate change, deep lake

![Fig. 1 Location of Lake Kuttara and observation sites on the bathymetry (water depth in m by dotted lines). The dashed dotted line shows a water divide of the lake.](image-url)
Effects of transboundary air pollution on water chemistry around the source area of Hakusan–Tedori River

*Yuko Itoh¹, Toru Okamoto¹, Kazuyoshi Asai², Youichi Fujihara³, Keiji Takase³

1. Forestry and Forest Products Research Institute, Japan, 2. GEO-SCIENCE LABORATORY, 3. Ishikawa Prefectural University

In recent years, there have been increasing concerns on the effects of atmospheric deposition on forest ecosystems, particularly on areas along the Sea of Japan. On-site monitoring throughout the year is difficult in most of these areas because of heavy snow. We began monitoring the cycles of major and minor elements in a small forested watershed in the middle part of the Tedori River Basin, Ishikawa Prefecture, Japan, in 2013. Atmospheric nitrogen (N) deposition from rainfall and snowfall was more than 20 kg ha⁻¹ year⁻¹. Nitrogen input quantity was similar to or more than that reported in N-saturated forested areas of the Kanto district. Therefore, similar to that in the Kanto district, higher N deposition loads from the atmosphere could also be observed due to the effect of nitrogen dynamics and the increase in nitrogen efflux at these forest watersheds. This study aimed to (i) determine the nitrogen input and output at the upper reaches of the Tedori River, including the head waters area that is located at the top of Mt. Hakusan; (ii) reveal the element dynamics and input–output budgets within a forested watershed in a heavy snowy region; and (iii) understand the contribution of transboundary air pollution to the quantity of atmospheric deposition. Stream water and spring water samples (n = 26) were collected at the Hakusan mountainous region (altitude 2,000 – 2,500 m high) and the upper reaches of the Tedori, Ozoe, and Syou Rivers, which originate in Mt. Hakusan. Furthermore, we investigated stream water and ground water samples (n = 10) at the middle reaches of the Tedori River. The nitrate concentrations in all the samples ranged from 0.00 to 2.93 mg L⁻¹ (median value: 0.69 mg L⁻¹). The stream water and spring water that were collected at the Hakusan mountainous region and the upper reaches of the three rivers showed significantly low nitrate concentrations (0.00–1.58 mg L⁻¹, median value: 0.52 mg L⁻¹). At the middle reaches area, the nitrate concentrations of stream water samples ranged from 0.47 to 2.12 mg L⁻¹ (median value: 1.13 mg L⁻¹). The nitrate concentrations of ground water samples in the middle and lower reaches of the Tedori River ranged from 1.92 to 2.93 mg L⁻¹ (median value: 2.31 mg L⁻¹). In contrast, the nitrate concentrations of stream water in the Tsukuba experimental forest watershed, which is reported as a N-saturated forested area of the Kanto district, were much higher (average value: 7.56 mg L⁻¹) than those in the Tedori Basin. Compared with the input concentrations, the output concentrations of nitrate in the water samples were generally very low around the Hakusan–Tedori River Basin. Therefore, higher N depositions have not yet influenced the nitrate concentrations of the stream water in this area.
Discussions on the mechanizm of soil-aggregate formation and stabilization

*Seiko Yoshikawa¹, Yasufumi Kuroda², Hideto Ueno³, Noriharu Ae⁴

1. Institute for Agro-environmental Sciences, National Agriculture and Food Research Organization, 2. Tokushima Agriculture, Forestry and Fisheries Technology Support Center, 3. Department of Agriculture, Ehime University, 4. Rakuno Gakuen University

To examine the effects of natural constituents on the stability of soil aggregates, phenolic acids or/and carbohydrates were mixed into several different types of soils. After a one-month incubation, the plot with applied phenolic acids showed the greatest mean weight diameter (MWD) of all the plots. For the treated soils before incubation, saturated water permeability was intermittently measured during continuous water percolation. The decline in water permeability was mitigated in the phenolic acids plot compared to the other plots for each soil. In order to determine the mechanism of aggregate stabilization by phenolic acids, they were added to synthetic soil aggregates using two methods (mixing and brushing), and the aggregates were then incubated for 153 days. The aggregate stability was greatest in the phenolic acid surface plots for the Andisol and the gray lowland soil and was most stable in the phenolics mix plot for the yellow soil. Aggregate stabilities in the carbohydrates plots and control plots were at lower levels. Phenolic acids were also found to have an effect on soil aggregate stability in sandy soil. The microbial activity alone could not explain the change in aggregate stability though it seemed more related to fungal number than bacterial number. In another similar experiment using the gray lowland soil, the liquid extracted from soil aggregates, to which p-coumaric acid had been added, was monitored using size exclusion chromatography. The p-coumaric acid-corresponding peak gradually disappeared, and larger substance-corresponding peaks had increased slightly by days 14 and 28, which was likely accompanied by an increase in aggregate stability.

Keywords: soil aggregation, phenolic acids, active iron and aluminum
The formation and decomposing processes of cryoconite granules on Urumqi Glacier No.1, in Tien Shan Mountains, China

*Masato Shiomuki¹, Nozomu Takeuchi¹, Zhongqin Li²

1. Graduate School of Science, Chiba University, 2. Chinese Academy of Science

Cryoconite is the dark-colored surface dust called cryoconite covering the ablation ice of glaciers. Organic and inorganic particles in cryoconite often form spherical aggregations called cryoconite granules. Cryoconite granules can reduce surface albedo and accelerate the melting of glaciers. In addition, cryoconite granules washed out of glacier may contribute to forming organic soils downstream of the glacier. Thus, it is important to understand the forming and decomposing processes of cryoconite granules on and out of glaciers. In this study, we analyzed the size and organic matter content of cryoconite granules collected from various ice surfaces and from the bottom of discharge water stream in the glacial forefield of Urumqi Glacier No.1 in Tienshan Mountains in China, in order to study the forming, maintaining and decomposing processes of cryoconite granules.

Microscopic study revealed that cryoconite granules were observed in at all of the study sites on the glacier. The mean size of cryoconite granules were relatively smaller on the surface in the upper area, near the glacial margins and in the meltwater streams. The results suggest that the life span of granules was limited by low temperature in the upper area, by abundant supply of mineral particles from a rock cliff adjacent to the glacier, and by physical forces of water streams. Cryoconite collected from the discharge water stream in the glacial forefield revealed that cryoconite granules were deposited at the bottom of stream in the area from the terminus to the distance of 100 meters. However, the granules appeared to be the less microbial abundance on the surface of granules compared with that on the glacier. Moreover, the split granules were often observed in the samples away from the glacial terminus. These results suggest that cryoconite granules washed out of the glacier, were gradually decomposed as cryoconite granules were moved down to the downstream.

Keywords: cryoconite, organic matter, glacial forefield, soil
Discharge of suspended solids and radiocesium from a forested watershed before and after line thinning

*Yoshiki Shinomiya¹, Masahiro Kobayashi², Yoshio Tsuboyama², Shinji Sawano², Koji Shichi², Tatsuya Tsurita², Yasuhiro Ohnuki², Yuko Itoh²

1. Tohoku research center, Forestry and Forest Products Research Institute, 2. Forestry and Forest Products Research Institute

We compared suspended solids (SS) and radio cesium discharges from a forested watershed in Ibaraki Prefecture, Japan (N36° 31.1', E140° 18.7') before and after line thinning. The study watershed has a drainage area of about 59.9 ha and is around 120 km southwest of the Fukushima Daiichi Nuclear Power Station. The watershed is underlain with sedimentary rocks (sandstone and mudstone). The elevation ranges from 130 to 300 m and the lower and upper slopes are covered with plantation conifer trees (Japanese cedar) and deciduous trees, respectively. Line thinning was carried out at a thinning rate of 35% across about 20% of the northeastern part of the watershed in 2012 and across the remaining part in 2013. Spur roads, 3-m wide, were constructed along streams. According to the two times of thinning, the forest road density changed from 27 to 108 m ha⁻¹ corresponding to the two thinning periods. Logged trees were dragged and grappled by forest machinery and were transported along spur roads to timber yards by forwarder-type forestry vehicles. V-notch weir and a water level gauge were installed at the watershed outlet in 2000. Stream water was sampled twice a month during base flow. Stream water samples of 1 or 2 L were collected every hour with an automatic water sampler (ISCO, Model6712) during storm events. Water samples were filtered with glass fiber filters (0.5 μm) to obtain the SS concentrations. We collated SS concentration data for 21 floods that occurred before thinning from June 2010 to August 2012, with total rainfalls between 15 and 130 mm and maximum rainfall intensities between 3 and 39 mm h⁻¹, and for 13 floods that occurred after thinning from October 2013 to August 2015, with total rainfalls from 19 to 127 mm and maximum rainfall intensities between 5 and 39 mm h⁻¹. We installed an SS sampler (Koga et al., 2004) in the stream close to the weir and collected SS samples every 2 or 3 months and measured their Cs-137 concentrations. We compared SS concentrations before (from July 2010 to August 2012) and after thinning (from October 2013 to August 2015) under flood and base flow conditions. We found that, within the same runoff range, some of the flood flow SS concentrations were higher after thinning than before thinning. The maximum SS concentration before thinning, observed in an event with a total rainfall of 74 mm and a maximum rainfall intensity of 39 mm h⁻¹, was 211 mg L⁻¹. After thinning (October 2013), the maximum SS concentration, observed in an event that had a total rainfall of 127 mm and a maximum rainfall intensity of 19 mm h⁻¹, was 790 mg L⁻¹. In February 2014, 5 months after thinning, an SS concentration of 751 mg L⁻¹ was recorded in an event with a total rainfall of 123 mm and a maximum rainfall intensity of 22 mm h⁻¹. Some of the ΣLss (the specific cumulative load of SS in a flood event) were higher after thinning than before thinning within almost the same ΣQ (the specific cumulative runoff in a flood event). We found that SS concentrations and ΣLss increased after thinning and that thinning had an influence on the SS discharge. The newly-constructed spur roads and the land cleared along the streams to facilitate harvesting were possibly the main sources of SS. We investigated the Cs-137 concentrations of SS from February 2012 to June 2016. Cs-137 concentrations were not related to thinning and Cs-137 concentrations in SS dropped during large storms. With the exception of large storms, Cs-137 concentrations in SS did not increase during or after thinning but decreased gradually from February 2012 to June 2016. The rate of decrease in the Cs-137 concentrations of SS was greater than the decrease expected because of Cs-137 decay. After thinning, SS discharges increased but Cs-137 concentrations in SS decreased in flood events. Therefore, Cs-137
export from the forested watershed did not increase sharply because of the thinning. Also, for smaller areas of bare land, SS discharges and Cs-137 exports would decrease. The next step is to examine changes in SS and Cs-137 concentrations for the years since thinning.

Keywords: forest, thinning, radiocesium, suspended solid
Size distribution of soil particles containing phosphorus in forest and agricultural soils in a watershed draining to Lake Biwa

*Nagane Miwako¹, Ken'ichi Osaka², Noriharu Ae³, Takashi Osono⁴, Satoru Hobara³

1. Hokkaido University, 2. The University of Shiga Prefecture, 3. Rakuno Gakuen University, 4. Doshisha University

Eutrophication of lakes and marshes is one of the important environmental issues for its influences on water quality and biological diversity. Phosphorus (P) is an essential nutrient for organisms and is often enriched in water systems due to human activities. Farmlands are potential sources of excess phosphorus in water systems because of receiving a lot of P as fertilizer for plant productivity. Phosphorus is typically observed in agricultural soils as phosphoric acid, which is easily adsorbed to soil minerals. Therefore, agricultural soils generally contain a large amount of P. Such soils can be transported to aquatic area including lakes and marshes directly through rain and soil erosion. It has been suggested that P export from farmlands is greater than from forests and is mainly through particulate forms rather than dissolved forms. Thus, we hypothesized that size distribution of soil particles is associated with the difference in the amount of P export between agricultural and forest soils.

In this study, we collected soils from farmlands (paddy fields and crop fields) and a forest in a watershed draining to Lake Biwa, fractionated the soils in size, and compared size distribution of soil particles and their P concentrations among the land types. The size fractionation was carried out into five particle sizes, 300 μm-2 mm (F1), 75-300 μm (F2), 10-75 μm (F3), and smaller than 10 μm (F4). These fractionated soils were processed to measure total P, organic P, and inorganic P.

The results showed that the agricultural soils showed higher percentage of small soil particles (F4), which are to be easily exported to streams, than those from forest soil. The total P concentrations in small particle fractions in agricultural soils were not significantly higher than those in forest soils. Consequently, the total amount of P in small soil particle fractions in agricultural soils was estimated to surpass that of forest soil. These observations suggest that farmlands in the watershed have greater potential of particulate P export than forests, which would partly explain why farmlands supply greater amount of P to water systems than forests.

Keywords: Lake Biwa, particle size, phosphorus, agricultural soil, forest soil
Effects of application of composted aquatic macrophytes from Lake Biwa on chemical properties in soil

*Takashi Osono¹, Satoru Hobara²

1. Doshisha University, 2. Rakuno Gakuen University

Aquatic macrophytes expand their coverage rapidly in the southern part of Lake Biwa since 1994. To control the expansion, Shiga Prefectural government harvests them and exploit composted ones as manures. However, a limited knowledge is available regarding the effect of composted aquatic macrophytes on plant growth and chemical and microbiological properties in soils and soil water. In the present study, we performed cultivation experiments using Wagner pots to test the growth of Japanese mustard spinach (Komatsuna, Brassica rapa var. perviridis) and chemical properties of soil amended with aquatic macrophytes (composted for one year) singly or in mixture with an inorganic chemical fertilizer. Wagner pots were prepared to include either of two soils (soil A from a greenhouse supplied with chemical fertilizers repeatedly and soil B from a old riverbed field). Soils in the pots were amended with composted aquatic macrophytes (MK), a commercially available chemical fertilizer (CH), or a mixture of MK and CH (HK); some pots received no amendments (NN, as a control). In the half of the pots, Japanese mustard spinach was planted (P+), whereas no plantation was done in the other half (P-). Therefore, we have the factorial design of four amendments (MK, CH, HK, NN) ´ two plantations (P+ vs P-) for each of soil A and soil B. The pots were incubated in screen houses for 4 weeks from May to June 2013 (soil A) and 2014 (soil B) in an experimental field of Kyoto University in Otsu city, Shiga, Japan. Soil pH was significantly higher in soils with MK than in the other amendments, and was significantly lower in P+ of soil A and in CH of soil B. Total C, total N and Truog-P concentrations were increased significantly in soils with MK. Phosphate concentration in soil water showed no significant difference between NN and MK for both soil A and B.

Keywords: aquatic weed, phosphorus, nutrient cycling
Measurement of Radiocaesium in an Irrigation Pond in the Neighborhood of the TEPCO Fukushima Daiichi Nuclear Power Station

*Tomijiro Kubota¹, Moono Shin², Susumu Miyazu¹

1. National Agriculture and Food Research Organization, Institute for Rural Engineering, 2. National Agriculture and Food Research Organization, Tohoku Agricultural Research Center

1. Introduction
Fukushima Prefecture has about 3700 agricultural ponds, which serve the important purpose of supplying irrigation water for paddy fields. The discharge of radioactive substances, mainly radiocaesium, into agricultural reservoirs in the aftermath of the March 2011 accident at the Tokyo Electric Power Company’s Fukushima Daiichi nuclear plant has caused significant pollution of these reservoirs. Dissolved radiocaesium is considered more harmful to rice cultivation than its other forms. Therefore, in order to ensure the safety of irrigation water, it is critical to understand the movement of dissolved radiocaesium. Relatively high concentrations of dissolved radiocaesium have been observed in ponds located in areas of Fukushima Prefecture that are known to exhibit large amounts of radiocaesium deposition, such as Okuma Town. This work aimed to study the characteristics of ponds exhibiting relatively high concentrations of dissolved radiocaesium. To this end, this report describes the results of a water quality survey in an irrigation pond located within 5 km from the nuclear power plant.

2. Methods
The target pond is located 5 km from the nuclear plant in Okuma town, Fukushima Prefecture. An airborne survey carried out in the area on April 29, 2011, shows a high Cs-137 deposition amount of about 3 MBq/m² in the vicinity of the reservoir body. The water quality survey was performed once or twice a month from March to November 2016. Water samples for Cs-137 analysis were pre-treated in situ by the filter cartridge method (FCM), and subsequently analyzed using a Ge semiconductor detector in the laboratory. A part of the water samples were transported to the laboratory and filtered using a membrane filter with a pore size of 0.45 μm. This membrane filter method (MFM) is the standard pre-treatment method in the analysis of dissolved radiocaesium. Other water quality parameters, such as pH, electrical conductivity (EC), turbidity, temperature, major inorganic ions, total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN), dissolved nitrogen (DN), fluorescent chlorophyll, etc. were also measured.

3. Results
The water quality survey was performed 14 times during the monitoring period. Concentrations of total Cs-137 (tCs-137) and dissolved Cs-137 (dCs-137), measured by FCM, were 2.3–53 Bq/L, and 1.2–6.7 Bq/L, respectively. Radiocaesium concentration was corrected to the concentration of the samples day. The errors of measurement for dCs-137 and pCs-137 were 1.3–6.1% and 2.6–6.3%, respectively.

The feature of correlation coefficient between Cs-137 and other water quality parameters are as follows. Turbidity and suspended solids were extremely highly correlated with tCs-137 concentrations, which also showed correlation with chlorophyll fluorescence, blue-green algae, and TN. Turbidity and SS were also correlated with dCs-137, though not as strongly as with tCs-137. Further, the dCs-137 concentrations also showed correlation with water temperature, DN, TN, chlorophyll fluorescence, blue-green algae, and NH₄. Concentrations of dCs-137 obtained by the MFM were about 0.5 times those obtained by the FCM; dCs-137 concentrations were obviously low.

Keywords: radioactive substance, radiocaesium, irrigation pond
A review of SWAT model on application for estimating nutrient dynamics in agricultural watersheds

*Yuta Shimizu¹, Shin-ichi Onodera², Kenji Matsumori¹

1. National Agriculture and Food Research Organization, Western Region Agricultural Research Center, 2. Hiroshima University

Soil and Water Assessment Tool (SWAT) was developed in the early 1990s with a combination of previously published models for predicting the effect of management decisions on water, sediment, nutrient and pesticide yields with reasonable accuracy on large, ungaged river basins. The model grew up as one of the most accurate predictionable model for nutrient flux in watershed-scale today because it has improved by many contributors with its opened source code. One of the advantages of using the model is to estimate of nutrient flux from non-point sources because it could consider various agricultural activities including plant nutrition. This is a reason that the model is able to simulate nutrient dynamics in watersheds, especially in agricultural watersheds, with reasonable accuracy. The model basocally simulates dynamics of water and related substances using physically-based equations. However, some of empirical equations based on observation in U.S. are adopted as well. Hence, it is necessary to confirm capability of the model when it's applied outside U.S. The objective of this study was to reveal capability of SWAT on estimation of nutrient flux from watersheds outside U.S. We reviewed peer-reviewed papers published in international journals which targeted various conditions from mountanious and hilly area dominated watershed to relatively flat area such as typical continental watersheds.

Keywords: Soil and Water Assessment Tool, agricultural watersheds, nutrient flux, literature review
Sensitivity analysis of parameters in SWAT Model for estimation of water discharge and sediment yield in the Ota river watershed

*Fandy Tri Admajaya¹, Shin-ichi Onodera¹, Yuta Shimizu², Guangzhe Jin¹, Mitsuyo Saito³

1. Graduate School of Integrated Arts and Science, Hiroshima University, 2. National Agriculture and Food Research Organization, Western Region Agricultural Research Center, 3. Graduate school of environmental and life science, Okayama University

Watershed management is one of effort to protect and maintain water resources. A basic framework of watershed management can be affected by watershed characteristics. Watershed characteristics can be looked as a landscape, as a hydrological system, and as an ecosystem. As hydrological systems, a watershed has some functions as a recharge area, a store area, and a discharge area. The Ota River is the major river which flows through Hiroshima Prefecture and empties into the Seto Inland Sea which a large delta has formed at the river mouth. The Ota River water discharge is important to know for a better water-land management based on a watershed.

A water discharge analysis of the Ota River basin could be knowing by SWAT model. SWAT (Soil and Water Assessment Tool) is a model that can help to predict hydrological condition based on physical properties. SWAT Model has been implemented for watershed hydrology research widely. (Wellen et al., 2015). The research objective is to estimate the Ota River water discharge and sediment yield using SWAT Model and SWAT-CUP.

Keywords: SWAT Model, Water discharge, sediment yield, Ota river watershed, Sensitivity analysis
Effect of groundwater recycle system on nitrate load distribution in an agricultural area, Japan

*JIAHUI BAI¹, Shin-ichi Onodera¹, Guangzhe Jin¹, Mitsuyo Saito², Yuta Shimizu³

1. Graduate School of Integrated Art and Science, Hiroshima University, 2. Graduate School of Environment and Life Science, Okayama University, 3. National Agriculture and Food Research Organization Western Region Agricultural Research center

As one of the major elements for crops, nitrogen directly affects the agricultural production. However, the excess application of fertilizers leads to a lot of environmental problems such as groundwater and surface water contamination. Especially, groundwater contamination by nitrate (NO₃⁻) has been an important issue in agriculture areas. Ikuchijima island, located on the Seto Inland Sea of western Japan is one of the most famous and important agricultural island in Japan, with citrus groves cover 42% of the island. Groundwater is one of important water resources in the area because of low annual rainfall and relatively high risk of drought in the area. To maintain and improve crop yields, nitrogen fertilizer is applied over the whole year at a rate of ~2,400 kg ha⁻¹ yr⁻¹. Consequently, most of the groundwater of the agricultural area are significantly contaminated by NO₃⁻, and are considered in “eutrophic” condition. Therefore, the recycle of high NO₃⁻ groundwater to the irrigation on the catchment scale is effective strategy for saving both fertilizer usage and groundwater resource in the area.

In this study, we estimated nitrogen load from the catchments in Ikuchijima island using the SWAT (Soil and Water Assessment Tool) model. Especially, we tried to simulate the effect of reducing fertilizer application on nitrogen load assumed the recycle of NO₃⁻ in groundwater. The results showed that NO₃⁻ loads were highest near the coastal areas, which is related to the distribution of citrus farms. 42% of nitrogen load was from citrus farms in the north region of the island, and it ups to 60% in the south region. It indicates fertilizer is the major source of nitrogen load in the island. Higher average nitrogen loadings also occurred in high density of residential area. The total nitrogen load from whole island was estimated to be 82507kg/year when the annual nitrogen fertilizer application is 240kg/ha/year. However, it decreased to 42548kg/year when the fertilizer application was reduced to 160kg/ha/year.

Keywords: groundwater recycle, nitrate load, SWAT model
The community composition and diversity of epilithic bacterium and microalgae in a Japanese river system during irrigation season

Tohru Ikeya, Chia-Ying Ko, Elfritzson Martin Peralta, Takuya Ishida, Yoshitoshi Uehara, Satoshi Asano, Noboru Okuda, Masayuki Ushio, Shohei Fujinaga, Ichiro Tayasu, Tomoya Iwata

1. Research Institute for Humanity and Nature, 2. Institute of Fisheries Science, National Taiwan Univ, 3. Department of Biological Sciences, Univ of Santo Tomas, 4. Center for Ecological Research, Kyoto Univ, 5. PRESTO, Japan Science and Technology Agency, 6. Faculty of Life and Environmental Sciences, Yamanashi Univ

The surface of river stones serves bacterium, microalgae, protozoas, and insect larvae as one of the major habitats in a river. These organisms are exposed to running river water in which discharged water, sediments and allochthonous organic materials are induced from upper sites. We conducted a cooperative research of the riverine benthos to assess the possible effect of anthropogenic effect of land use on water quality and microflora of epilithic communities in the Yasu River watershed in late spring. This study examined the site-specific variability of the bacterial and algal composition using MiSeq 16S rRNA gene sequencing and cell counting. These data were compared with a set of environmental parameters and photosynthetic pigments by multivariate ordination analyses.

The sequence data of amplicons after amplification of 16S hypervariable regions 3 were obtained by a MiSeq (Illumina) sequencer to collate with SILVA database using the USEARCH package and the pipeline. The yield of the amplification was so low at one of the 30 sites that the analysis was made at 29 sites for the OTU analysis. Because cyanobacterial OTUs comprised 342 OTUs in a total of 5545 OTUs, the rests were assumed as heterotrophic bacterium and were grouped separately. As high as 180 species of microalgae were also discriminated by an optical microscopy. The spatial distribution of both bacterial OTUs and microalgae indicates a cluster of upper stream sites where the concentration of phycoerythrin seems to be high. So, some environmental gradient is supposed to induce such site-specific distribution of bacterium, microalgae and phycobilin pigments. Non-metric multidimensional scaling (NMDS) showed that the distribution of autotrophic microbes, that are cyanobacterium and microalgae, have a significant correlation with water temperature, dissolved organic carbon, altitude, water current, land use, and turbidity, though cyanobacterium also have a significant correlation with pH whereas microalgae has a significant correlation with DO. In addition to water temperature, dissolved organic carbon, altitude, water current, land use, and turbidity, the stream order is included in significant factors for the distribution of heterotrophic bacterium.

Keywords: bacterium, microalgae, 16S, MiSeq
Land use impact on benthic macroinvertebrate assemblages in selected lotic ecosystems in a government-declared protected landscape

*Katharine Grace Rojas Espiritu¹, Jana Nicole Abiol De Vera¹, Francis Godwin Garcia Cantre¹, Elfritzson Martin Peralta², Irisse Bianca Baldovino De Jesus²,³, Paul Palomares⁴, Jonathan Carlo Briones¹,²,³, Tohru Ikeya⁵, Francis Magbanua⁴, Rey Donne Papa¹,²,³, Noboru Okuda⁵

1. University of Santo Tomas, College of Science, 2. Research Center for Natural and Applied Sciences, 3. The Graduate School, University of Santo Tomas, Espana Boulevard, Metro Manila, Philippines, 4. Institute of Biology, University of the Philippines Diliman, Quezon City, Philippines, 5. Research Institute for Humanity and Nature, Kita-ku, Motoyama, Kyoto, Japan

The Upper Marikina River Basin Protected Landscape (UMRBPL) was established to rehabilitate the Marikina watershed. However, these areas remain prominently residential and agricultural; which in turn may create disturbances to the ecosystem. One way to investigate the condition of the lotic systems is through the use of biomonitoring. In this research, ten sites (residential, agricultural, and combined land use) were sampled for physicochemical parameters and benthic macroinvertebrates. A total of 2,385 samples were identified belonging to 70 genera from 38 families of 12 orders. Principal component analysis determined the environmental gradients among sites. Hierarchical clustering analysis determined site clustering based on conductivity and taxa density, despite the difference in land use. Canonical correspondence analysis showed the affinity of *Paraleptophlebia* sp., *Sparsorythus* sp., *Afronurus* sp., *Acentrella* sp., and *Baetiella* sp. to temperature; *Baetiella* sp. and *Cheumatopsyche* sp. to pH; and *Caenis* spp. to DO. It also showed the sensitivity of *Ceratopsyche* sp. to DO and conductivity; *Thiara* sp., *Melanoïdes* spp., *Corbicula* sp., *Naucoris* sp., *Microcylloepus* sp., *Neoperla* sp., *Elodes* sp., *Parochlus* sp., *Chimarra* sp., and *Oestropsyche* sp. to conductivity. The study also found out that the presence of anthropogenic factors may be the leading cause to the changes in water quality, which, in the case of this study, shows that the rampant use of pesticides in the studied agricultural areas of the UMRBPL caused the water’s acidic pH. This resulted to a negative impact on stream biodiversity as compared to residential and combined-use areas. It would therefore be necessary to assess the types and kinds of pesticides used in these agricultural areas as they have shown to decrease stream biodiversity.

Keywords: Upper Marikina River Basin Protected Landscape, Biomonitoring, Stream biodiversity
Stream Benthic Macroinvertebrates Response to Water Quality of Urban and Rural Areas of the Marikina Watershed

*Aleziz Kryzzien Villanueva Tan¹, Alexis Elegino Belen¹, Cristine Perez¹, Gelsie Rose Buenaventura¹, Elfritzson Martin Peralta², Irisse Bianca Baldovino De Jesus³,², Paul Palomares⁴, Jonathan Carlo Briones¹,²,³, Tohru Ikeya⁵, Francis Magbanua⁴, Rey Donne Papa¹,²,³, Noboru Okuda⁵

1. University of Santo Tomas, Department of Biological Sciences College of Science, 2. Research Center for Natural and Applied Sciences, 3. The Graduate School, University of Santo Tomas, Espana Boulevard, Metro Manila, Philippines, 4. Institute of Biology, University of the Philippines Dileman, Quezon City, Philippines, 5. Research Institute for Humanity and Nature, Kitu-ku, Motoyama, Kyoto, Japan

The Marikina Watershed is located at the north-eastern part of the province of Rizal and is comprised of five municipalities: Antipolo, Baras, Rodriguez, San Mateo, and Tanay. But due to the rise of population and urbanization of the country, some of the areas of the Marikina Watershed were affected and the water quality has drastically changed. This study aims to evaluate the response of benthic macroinvertebrates to streams with different physicochemical conditions along the Marikina Watershed and to identify these benthic macroinvertebrates down to the lowest possible taxa. Sixteen sites were chosen for this study with sites U1-U8 near urban communities and sites R1-R8 near rural communities. The physicochemical parameters were tested on-site and benthic macroinvertebrates were sampled using a Surber Sampler. It was found that species from orders Ephemeroptera, Plecoptera, Trichoptera, and Coleoptera were more abundant in sites R1-R8 than sites U1-U8. Dipterans, such as chironomids and simulids were more abundant in sites U1-U8 than sites R1-R8. This is due to the pollution tolerance of the benthic macroinvertebrates; dipterans are more resistant to pollution meaning that species under Ephemeroptera, Plecoptera, Trichoptera, and Coleoptera are good bioindicators for pollution. It was found that the increase in urban communities negatively influenced the benthic macroinvertebrate community and therefore poses a serious threat to the biodiversity of the organisms found in the inland water areas of the country.

Keywords: bioindicators, benthic macroinvertebrates, urbanization
Spatial Pattern of Ground Water Utilization in Silang-Santa Rosa Sub-watershed

*Satoshi Asano¹, Yoshitoshi Uehara¹, Haruka Nakashima², Minori Tokito², Izuru Saizen², Osbert Leo Privaldos³, Ken'ichi Osaka⁴, Noboru Okuda¹

1. Research Institute for Humanity and Nature, 2. Kyoto University, 3. Lake Laguna Development Authority, 4. The University of Shiga Prefecture

Ground water is one of the most important resources in Silang-Santa Rosa watershed in Philippines. Population growth is now aheading, therefore the dependant on ground water gains much more speed in near future. This study will reveal and visualize how resients access, manage and utilize sharrow ground water through interview surveys. Taget gound water is 50, and the results will supporse construction of ground water governances.

Keywords: Ground water
Observation for the temporal variation of lacustrine groundwater discharge (LGD) in Lake Biwa

1. Graduate School of Environmental and Life Science, Okayama University, 2. Graduate School of Integrated Arts and Sciences, Hiroshima University, 3. School of Geography and Planning, Sun Yat-sen University, 4. The University of Shiga Prefecture, 5. Research Institute for Humanity and Nature

Lacustrine groundwater discharge (LGD) is one of the potential nutrient paths from a catchment to a lake. Lake Biwa is the largest freshwater lake in Japan. Some researchers have pointed out the presence of LGD in littoral area of the lake. However, the temporal variation of LGD is not well evaluated in the previous studies. In the present research, we aimed to examine the temporal variation of LGD in Lake Biwa based on the results of continuous measurements at the littoral area.

We conducted the mooring observation for about 9 hours from morning to evening in July 2016. Water temperature, electric conductivity and radon (\(^{222}\text{Rn}\)) concentration in lake water were measured at the littoral areas near Hikone city. \(^{222}\text{Rn}\) is a radioactive element of uranium (\(^{238}\text{U}\)) series with 3.8 day of half-life. \(^{222}\text{Rn}\) is a useful tracer of groundwater discharge because it generally enriched in groundwater than surface water. We also measured flow velocity using ADCP (Acoustic Doppler Current Profiler). \(^{222}\text{Rn}\) concentration in lake water was totally high compared with the offshore water. It suggests the nearshore water is influenced by LGD. Water level changed about 5 cm and observed maximum velocity was \(\pm 0.2\sim0.3\ \text{m}^3/\text{s}\) during the period. It indicates exchange process between nearshore water and offshore water occurred in the study area. \(^{222}\text{Rn}\) concentration tended to decrease with the increase of water exchange.

Keywords: Lacustrine groundwater discharge, Temporal variation, Lake Biwa
Characteristic of oxygen isotope ratio of phosphate in endmember of Lake Biwa

*Guangzhe Jin¹, Mitsuyo Saito², Shin-ichi Onodera¹, Takuya Ishida³, Noboru Okuda³, Rong Yi⁴, Syuhei Ban⁴, Yusuke Tomozawa¹

1. Graduate School of Integrated Arts and Science, Hiroshima University, 2. Graduate school of environmental and life science, Okayama University, 3. Research Institute for Humanity and Nature, 4. University of Shiga Prefecture

Lake eutrophication control and nutrient management are important to build up a sustainable safety water resources. Despite the nutrient discharge through rivers, nutrient transport through sediment and lacustrine groundwater discharge could be an important internal nutrient resource. This research aims to clarify the dynamics of nutrient cycle in lake bed sediment, groundwater and overlying water using nutrient and phosphate oxygen isotope end-member analysis.

We collected water and sediment samples from Lake Biwa during several field work in 2016. Sediment samples from 5m 10m and 20m depth were collected in Lake Biwa along the transactions from the east bank to central lake. Surface, bottom water samples as well as river water and groundwater were also collected simultaneously. Major nutrient, oxygen isotope, and phosphate oxygen isotope were also analyzed.

Results show the high P concentration in sediment pore water, ranging from 50-230 times of lake water. Indicates sediment recycled phosphorus would be an important resource contributing to lake nutrient cycle as Lake Biwa is considered as phosphorus limitation environment. High radon concentration in pore water at 5m and 20m proved the existence of deep LGD and shallow LGD. Oxygen isotope ratio of phosphate indicates shallow LGD may refer to recharged river water and groundwater near the eastern bank, while the much lower ratio in deep pore water may refer to other groundwater resources.

Keywords: nutrient, phosphate oxygen isotope, sediment
Migration routes of pelagic crucian carp "Carassius auratus grandoculis" endemic to Lake Biwa revealed by otolith Sr stable isotopes.

*Yoshitoshi Uehara¹, Yoshitaka Kataoka², Takeshi Kikkou³, Takuya Ishida¹, Satoshi Asano¹, Yuki Kobayashi⁵, Tsuguo Otake⁴, Noboru Okuda¹

1. The Research Institute for Humanity and Nature, 2. Shiga Prefecture Fisheries Experiment Station, 3. Shiga Prefecture, Agriculture, Fisheries and Fisheries Department, 4. The University of Tokyo, 5. Yamaguchi University

1. Introduction
Paddy Fields have a function for the place as fish spawning and as fish juvenile growing. Therefore, it is positioned as an important habitat for conserving biodiversity of fish communities.Cyprinid fish are dominant species in the paddy field. Many fish species dependent on paddy field are threatened with extinction due to declined spawning habitat such as reed bed and lagoon and, disconnected paddy field and Lake. The information of history on the habitat of these fish is indispensable to restore the resource amount of these fish and conserve the habitat.

In recent study, analysis of otolith chemical composition such as Strontium isotope is often used to trace about the habitat use and conditioned behaviors of individuals (Kennedy et al., 2001). Strontium (Sr) stable isotope ratio ($^{87}\text{Sr}/^{86}\text{Sr}$) of fish otolith varies depending on environmental condition of habitat water. In addition, Nakano et al., 2008 reported that river water qualities around lake Biwa are reflected geological specificity, and are significant spatial variation in the elemental composition and $^{87}\text{Sr}/^{86}\text{Sr}$. In this study, we tried to trace migration history of fish spawning at paddy field, using $^{87}\text{Sr}/^{86}\text{Sr}$ of otolith and fish habitat water around Lake Biwa.

2. Material and Method
At Lake Biwa watershed, fish and habitat water sampling were conducted at paddy field and canal. This study focused on Nigorobuna Carassius auratus grandoculis. This fish is endemic subspecies in Lake Biwa, and is known to migrate between lake, paddy field and lagoon. In Shiga prefecture, as a resource growing project, Nigorobuna juveniles are stocked utilizing paddy field. In addition, a follow-up survey of juvenile is conducted. Juveniles were marked its otolith with alizarin complexone, and released into paddy field. In this study, we analyzed trace elements of otolith (lapillus), for marked individuals and for wild individuals collected at paddy fields and water way. Otolith samples are embedded by epoxy resin and grinded to make slice sections. Micro core samples were collected to drill 80 μm depth from otolith sections, from the center part (core) to margin along the ring pattern at intervals about 100 μm using micro sampling device (MicroMill, Electro Scientific Industries). Powder samples collected with micro sampling device were dissolved with distilled nitric acid. After measuring trace element of habitat water samples and micro-core samples using ICP-MS, $^{87}\text{Sr}/^{86}\text{Sr}$ was measured with thermal ionization mass spectrometry.

3. result and discussion.
The mean value (5 individuals) for $^{87}\text{Sr}/^{86}\text{Sr}$ of the otolith core for marked individuals was 0.71112± 0.00003SD. They were sampled at place where they were released. The $^{87}\text{Sr}/^{86}\text{Sr}$ value of the otolith core showed similar $^{87}\text{Sr}/^{86}\text{Sr}$ value (0.71108) in the lake water collected from the sampling site. Additionally, from the center part to the edge part of the otolith, $^{87}\text{Sr}/^{86}\text{Sr}$ values showed similarity to the $^{87}\text{Sr}/^{86}\text{Sr}$ value of the lake water collected from the sampling site. These results suggest that the marked individuals migrated around released-place and returned to spawn at sampling site without migration to the north part of the lake. This was confirmed because there were no signals detected from the otoliths that could
indicate they migrated to the north part of the lake. For wild individuals, the mean value (three individuals) for $^{87}\text{Sr}/^{86}\text{Sr}$ of the otolith core is 0.71184±0.00009 which is also within the range $^{87}\text{Sr}/^{86}\text{Sr}$ values of the paddy field. $^{87}\text{Sr}/^{86}\text{Sr}$ values of otolith edge (0.71217-0.71236) was close to the $^{87}\text{Sr}/^{86}\text{Sr}$ values of south part (0.71221) and north part (0.71250) of the lake. These results suggest that the wild individuals return to the paddy field to spawn after migrating from the coast of Lake Biwa. The results of these preliminary analyses suggest the potential of the method using $^{87}\text{Sr}/^{86}\text{Sr}$ of the otolith micro-core in tracing migration history of freshwater fish.

Keywords: fish migration, Strontium isotope ratio, Lake Biwa, otolith, paddy field ecosystem
Estimation of recharge temperature, flow and denitrification in coastal groundwater, using dissolved gas.

*Yusuke Tomozawa¹, Shin-ichi Onodera¹, Mitsuyo Saito², Daiki Aritomi³

1. Graduate School of Integrated Arts and Sciences Hiroshima University, 2. Graduate School of Environmental and Life Science, Okayama University, 3. Yamaguchi prefectural government

Nitrogen load to the groundwater by application of fertilizer in the farmlands has affected nitrogen cycle processes and water environment. Nitrate pollution occurs and denitrification process increases with producing N2 and N2O gas. In addition, recharge water in various altitudes converges in coastal groundwater and transports nitrate.

In this study, we examined to confirm recharge temperature, flow and denitrification in coastal groundwater, using dissolved N2 and Ar gas. Our study site is located on a small and steep catchment covered by citrus grove of Ikuchi Island in Hiroshima prefecture, western Japan. We collected groundwater samples at the observation wells with the depth of 3m, 10m, 15m, 20m, 30m and 40m. After collecting without mixing of air, dissolved N2 and Ar gas concentrations were analyzed by gas chromatography.

As a result, when the excessive amount of dissolved N2 gas concentration was estimated from the groundwater temperature, there was a negative correlation with dissolved oxygen content. It is thought that this is because denitrification - N2 production is considered to be carried out so that there is less dissolved oxygen, suggesting the activity of anaerobic denitrifying bacteria.

This is also compatible with the results of previous studies, and it can be considered that the evaluation of denitrification state becomes possible by considering more diversely.
Sewage water impacts on groundwater and coastal canals in Osaka city; high nutrient and flood impacts

*Shin-ichi Onodera¹, Mitsuyo Saito², Guangzhe Jin ¹, Masanobu Taniguchi³

Water pollution by domestic sewage is one of the critical environmental problems in the early stage of urbanization with significant growth of population. In case of Osaka metropolitan area in Japan, the pollution was significant until 1970s, while it has been improved by the development of sewage treatment systems. However, removal of nitrogen needs the advanced process therefore relatively large part of dissolved inorganic nitrogen (DIN) is usually discharged by treated sewage effluent. Besides, increase of sewage-derived pollutant loads through the combined sewage systems during rainfall events is recognized as a new problem in recent years. However, the impacts of sewage-derived loads on the water environment of river and coastal area have not been fully evaluated in previous studies. In the present research, we aimed to examine the dynamics of sewage-derived nutrients in highly urbanized coastal rivers. Study area is located on the coastal area of Osaka bay in Seto Inland Sea, western Japan. Treated sewage effluent is discharged from three sewage treatment plants (KH, SU and SA) to a river and channels. Water and sediment samples were collected and electric conductivity (EC), chlorophyll-a (Chl.-a) and dissolved oxygen concentration (DO) were measured from the discharging points to few kilometers offshore at 100-300 m intervals. Nutrients (nitrogen, phosphorus and silica), nitrogen and carbon contents and stable isotope ratios (δ¹⁵N and δ¹³C) of particulate organic matter (POM) and sediment, nitrogen and oxygen stable isotope ratios (δ¹⁵N and δ¹⁸O) in nitrate (NO₃⁻) were measured. Nitrate-nitrogen (NO₃⁻-N) concentration were significantly high near the discharging point then it decreased to offshore suggesting that impact zone of sewage effluent is about 1 km from the discharging point. Significant NO₃⁻-N uptake by phytoplankton as well as dilution process were suggested in the area. However, the impact zone expanded more than twofold during the rainfall event (>20mm/h). Nutrient contents were significantly high both in the sediment and pore water near the discharging points and it caused relatively high diffusion flux to overlying water. It suggests nutrient regeneration process from the sediment is the secondary loading process in the study area.

Keywords: sewage, nutrient, coastal canal, urbanization, groundwater
Impacts of cold-water intrusion on coral reef ecosystems at Nanwan Bay of southern Taiwan

*Pei-Jie Meng¹,², Cheng-Hao Tang³, Chung-Chi Chen⁴

1. Institute of Marine Biology, National Dong-Hwa University, Checheng, Pingtung 944, Taiwan., 2. National Museum of Marine Biology and Aquarium, Checheng, Pingtung 944, Taiwan., 3. Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan., 4. Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan.

This study under the support of the Kenting National Park Headquarters, conducted an on-line real time monitoring system of the water quality in coral reef ecosystem of the Nanwan Bay, southern Taiwan. The monitoring parameters include temperature, salinity, conductivity, dissolved oxygen, pH, turbidity. The monitoring provides useful information to the scientific community, servers as records of contamination events and baseline data for environmental conservation. Results showed that On-line real time monitoring have also helpful explanation for natural episodic events (e.g., cold water intrusion) in this coral reef ecosystem. We have also compared the physiological stress responses Induced by fluctuating temperature regime of upwelling and constantly elevated temperature in Pocillopora damicornis. The study is to establish the early warning systems for the conservation of coral reefs. After reviewing the CREWS and related references, we propose to use DHW (Degree Heating Weeks) as the indicator of coral bleaching. The program is not only successfully fitted in the bench top simulation, but also has a successful application in field work. The on-line real time monitoring results with emphasizing on the short time scale, e.g., hours to days, effects on coral reef ecosystem has also been discussed in this study.

Keywords: cold-water intrusion, coral reef; ecosystems, bleaching
Deep marine sedimentation off the “huge-dam free” Shimanto river mouth, SW Japan: comparison with other Japanese rivers

*Masaaki Shirai¹, Takako UTSUGAWA¹, Akiko Omura², Ryo Hayashizaki¹, Yuma Kato¹, Yu Saitoh³, Juichiro Ashi²

1. Tokyo Metropolitan University, 2. University of Tokyo, 3. Research Institute for Humanity and Nature

It has been well known that dam construction on rivers can cause a decrease in sediment supply and serious coastal erosion (e.g., Stanley and Warne 1998), while influence of dams on the sedimentary environment beyond the coastal area has not been well known. Decrease in mass accumulation rate (MAR) during the middle 20th century based on excess Pb-210 activity were reported from the hemipelagic environment off Kumano (Shirai and Omura, 2016) and off Niigata (Shirai et al., 2017), central Japan, and these decreases in MAR were inferred to have been caused by entrapment of silt–clay grains in the huge dam reservoir.

MARs since middle 20th century of core samples obtained from off the Shimanto river mouth, SW Shikoku region, which does not have huge dam, were examined based on excess Pb-210 activity. The core samples were obtained with multiple corer (core length < 60 cm) during the R/V Hakuho-maru KH-15-2 cruise (Leg. 3).

Subsamples sliced with 1 cm thick were dried, crushed and measured by an ORTEC High Purity Ge gamma spectrometer housed in the Department of Geography, Tokyo Metropolitan University with a 48 hours counting. MAR was estimated from Pb-210 radioactivity concentration and mass depth of the core samples based on dry bulk density of other subsamples measured with the Accupyc 130 gas pycnometer housed in Atmosphere and Ocean Research Institute, the University of Tokyo.

In the off SW Shikoku region, MARs of investigated cores are almost constant during the upper half of the cores corresponding to mid to upper 20th century. Distinct contrast between the constant MAR off the huge-dam-free Shimanto River with decrease in MAR off the rivers blocked by huge dams (Shirai and Omura, 2016; Shirai et al., 2017) agrees well with the inference that deposition in dam-reservoir decrease in riverine sediment supply to deep marine hemipelagic environments. It is also necessary to be aware of the influence that dam construction and other human activities have not only on riverine to coastal environments but also on the unseen deep marine environment.

References

Keywords: deep marine, river, dam, excess Pb-210, mass accumulation rate (MAR)