Decadal trend of the tidally-induced stratification in Fukuoka Bay: Its potential cause and influences

*Hikaru Nakata¹, Atsuhiko Isobe², Shinsuke Iwasaki², Ning Zhao¹

¹Department of Earth System Science and Technology, Kyushu University, ²Research Institute for Applied Mechanics, Kyushu University

Harmonic constants of astronomical tides are not always “constant” in coastal waters where the geography and bathymetry have been anthropologically altered. In fact, it was shown that the tide has gradually decreased in recent years around Japan (e.g., Tokyo Bay, Ise Bay, Osaka Bay, and Ariake Sea) mainly owing to the changes of the resonant period of the bay in constructing large amount of man-made structure (Unoki, 2003). It is therefore valuable to investigate secular trend of tides presumably occurred in Fukuoka Bay because massive construction projects have proceeded in the past decades. Of note, the ocean environment in small bays would be easily affected by the change of the tides and tidal mixing. For instance, it is reasonable to consider that weakened tidal mixing at neap tides intensifies the estuarine circulation in the summer coastal waters, and thus, the water temperature (salinity) decreases (increases) owing to the inflow of the cool and saline subsurface water from the neighboring open ocean (hereinafter, “estuarine-circulation phase”). Meanwhile, it is also reasonable to consider that the weakened tidal mixing at neap tides increases (decreases) the sea surface temperature (salinity) owing to the weakened vertical mixing (“mixing phase”).

In this study, we focused on the changes in the tidally-altered stratification of Fukuoka Bay (facing to the Tsushima Strait) using archived water temperature (T) and salinity (S) observed by the Fukuoka Fisheries and Marine Technology Research Center. The T/S data observed during the summer (June - August) from 1982 to 1998 were categorized into data obtained at spring and neap tides. It is interesting that, in the 1980s (1990s), the sea surface temperature at neap tides was lower (higher) than that at the spring tides. The suggestion is that weak (strong) tidal mixing remains (destroys) the summer stratification at neap (spring) tides in 1990s, whilst this tidal mixing process did not work well in 1980s. Also of particular interest is that the salinity in the bottom layer at neap tides was higher in 1980s than that in 1990s. This suggests that Fukuoka Bay belonged to the estuarine-circulation (mixing) phase in 1980s (1990s). In conference, we will provide the analytical results of how spring/neap tide influence the T/S in the bay. Moreover, we will present the potential cause(s) of why the above phase change occurred in the Fukuoka Bay. In addition, we now attempt to uncover its influence(s) on the surrounding atmospheric condition (e.g., sea-breeze) as well as oceanic one. The response revealed in the lower-level atmosphere over the Fukuoka Bay (and neighboring land) might occur as in the Seto Inland Sea, where the fortnightly tidal cycle actually alters the air temperature and wind magnitudes over the sea via changes in the tidal mixing (Iwasaki et al., 2015).

Keywords: tide, estuarine circulation, air-sea interaction, Fukuoka Bay, tidal mixing

キーワード：潮汐、エスチュアリー循環、大気海洋相互作用、福岡湾、潮汐混合
Simulation of the Seto Inland Sea by using a nested-grid OGCM

*Masao Kurogi1, Hiroyasu Hasumi2

1. Japan Agency for Marine-Earth Science and Technology, 2. Atmosphere and Ocean Research Institute, The University of Tokyo

A nested-grid OGCM based on an ice-ocean coupled model, named COCO is used to investigate the flow field in the Seto Inland Sea. The model is composed of interactively coupled four models from a global model to the finest (about 500 m mesh) regional model covering the Seto Inland Sea. The model is integrated for one year during 2012 with potential temperature and salinity around Japan (outside the Seto Inland Sea) restored to reanalysis data. According to Zhang et al. (2016) who measured the net transport through the Seto Inland Sea by using reciprocal sound transmission, the net transport is westward (-1.3 x 10^4 m^3 s^-1) on average in six months of 2012. The simulated net transport near the observational section during February-December 2012 is eastward (0.35 x 10^4 m^3 s^-1) on average. Difference in direction of net transport between the observations and simulation may be partly due to assumption of northeast flow direction used in the observations. In the simulation, the time-averaged velocity field shows complicated structure. The net transport is estimated in a similar manner as in the observations: after calculating the velocity component along the observational section, the transport is estimated with the assumption of northeast flow direction. The resultant net transport is westward (-0.036 x 10^4 m^3 s^-1) on average as in the observations though its magnitude is smaller.

キーワード：瀬戸内海、海洋大循環モデル、ネスティング
Keywords: Seto Inland Sea, Ocean general circulation model, nesting
Circulation and haline structure of a microtidal bay in the Sea of Japan influenced by the winter monsoon and the Tsushima Warm Current

*Sachihiko Itoh¹, Akihide Kasai², Aigo Takeshige, Kei Zenimoto³, Shingo Kimura¹, Keita W Suzuki³, Yoichi Miyake¹, Tatsuichiro Funahashi⁴, Yoh Yamashita³, Yoshiro Watanabe¹

1. Atmosphere and Ocean Research Institute, The University of Tokyo, 2. Graduate School of Fisheries Science, Hokkaido University, 3. Field Science Education and Research Center, Kyoto University, 4. Tokyo Metropolitan Islands Area Research and Development Center of Agriculture, Forestry and Fisheries

Mooring and hydrographic surveys were conducted in Tango Bay, a microtidal region of freshwater influence (ROFI) in the Sea of Japan, in order to clarify the circulation pattern in the bay and its driving forces. Monthly mean velocity records at four stations revealed an inflow and outflow at the eastern and northern openings of the bay, respectively, which indicates an anticyclonic circulation across the bay mouth. The circulation was significantly intensified in winter, in accordance with the prevailing NW wind component of the winter monsoon. The anticyclonic circulation at the bay mouth was connected to an estuarine circulation that was evident near the mouth of the Yura River at the bay head. Surface salinity just offshore of the river mouth was closely related to the Yura River discharge, whereas in lower layers the offshore water had a stronger influence on salinity. Prior to a seasonal increase in the Yura River discharge, summer salinity decreased markedly through the water column in Tango Bay, possibly reflecting intrusion of the Changjiang Diluted Water transported by the Tsushima Warm Current. In contrast with the traditional assumption that estuarine circulation is controlled mainly by river discharge and tidal forcing, the circulation in Tango Bay is strongly influenced by seasonal wind and the Tsushima Warm Current. The narrow shelf may be responsible for the strong influence of the Tsushima Warm Current on circulation and water exchange processes in Tango Bay.

キーワード：海水交換、ROFI、microtidal bay、エスチュアリー循環、対馬暖流、長江希釈水
Keywords: water exchange, ROFI, microtidal bay, estuarine circulation, Tsushima Warm Current, Changjiang Diluted Water
Spatial difference of spring phytoplankton bloom dynamics in the Japan Sea

*ITO MASASHI, Taketoshi Kodama, Taku Wagawa, Yosuke Igeta

1. Japan Sea National Fisheries Research Institute, Japan Fisheries Research and Education Agency

Onset and magnitude of spring phytoplankton bloom impact higher trophic levels in the ocean. In previous, relationship between mixed layer depth and euphotic layer depth is considered as the key factor to onset of the bloom (critical depth hypothesis, CDH), but in recent, importance of turbulent mixing in surface layer is focused (critical turbulence hypothesis, CTH). In the Japan Sea (JS), onset of spring bloom is heterogeneous: chlorophyll a (Chl-a) concentration reaches maximum in April in the south, and it does in May in the north. This heterogeneity has been explained by the CDH in the previous studies, but the role of the turbulence mixing has not been considered. In this study, we aimed to explain this spatial difference in timing of bloom based on the mechanism of bloom, the CDH and the CTH.

For understanding the mechanisms, we calculated the weekly and monthly climatological values of mixed layer depth (MLD) from historical water temperature and euphotic layer depth (ELD), net heat flux (NHF), wind stress (WS), nitrate concentration, and satellite-derived sea surface chlorophyll a (Chl-a) concentrations. Additionally, ecosystem model based on NEMURO was constructed. This model added turbulence as the physical parameter: it is weak at the surface when NHF is positive. Onset of spring bloom was defined as when increase rate of Chl-a concentration was more than twice compared to the previous week.

The JS was divided by temperature at 50 m depth and temporal variation of Chl-a concentration into four regions, the southern part (South), the subpolar front region (SFP), the northwestern region (NW), and the northeastern region (NE).

First, onset of spring bloom was not different among the areas. The Chl-a concentration began to increase at the timing when the NHF changed from negative to positive. This result supports CTH and lowering of the turbulence mixing is the controlling factor of onset of the spring phytoplankton bloom in the JS. In the SFP, the MLD is always shallower than the ELD during winter, but rapid increase of Chl-a concentration occurred: CDH is not supported in the SFP. The results from the ecosystem model support the CTH as well as the observations. When the turbulence mixing in surface layer was cancelled in the model, the beginning of spring bloom delayed, but when the turbulence was deal with as realistic, the onset of bloom was reproduced well in the model.

Second, the timing of peak of the bloom was not homogeneous as same as the previous study: it delayed in the NE. Since the onset of bloom was synchronous all over the JS, this results indicated that phytoplankton growth rate is different among the ocean. The growth of phytoplankton is controlled by temperature and nutrient concentrations as well as the light condition, but in the model, the difference of former two parameters did not affect the timing of peak. On the other hand, it was effected by the depth of mixed layer. In the NW, winter mixed layer was deeper than the other three regions, and our model indicated that phytoplankton vertically transported by this deep mixing to the layer with low light level in the NW. This phenomenon supports CDH.

In conclusion, we succeed to revise the dynamics of spring bloom in the JS based on the CTH as follows: the onset of phytoplankton bloom is controlled by the turbulence mixing, and its development is controlled by the degree of mixing as well as the turbulence.
キーワード：春季ブルーム、臨界乱流仮説、臨界深度仮説
Keywords: spring bloom, critical turbulence hypothesis, critical depth hypothesis
An estimate of the tsunami-debris quantity washed ashore on the US and Canadian beaches, based on a webcam monitoring and a particle tracking model experiment

*Shinsuke Iwasaki*, Atsuhiko Isobe, Shin'ichiro Kako, Tomoya Kataoka

1. Kyushu University, Research Institute for Applied Mechanics, 2. Graduate School of Science and Engineering, Kagoshima University, 3. Tokyo University of Marine Science and Technology

The 3.11 Earthquake occurred in 2011 triggered a great tsunami in the Tohoku area, Japan. The Ministry of Environment, Japan estimated that about 5 million tons of Japanese tsunami marine debris (JTMD) flowed out into the North Pacific, and that 1.5 million tons (30%) of JTMD is still floating in the North Pacific. Thus, they have a potential to reach the North American and Pacific Islands’ coasts even at present time. In particular, an attention is placed on coastal Japanese species carried by JTMD because these invasive species might damage the indigenous marine ecosystem. Particle tracking models (PTMs) might be capable of computing JTMD motion in the ocean circulation. However, it is difficult to determine by the PTMs alone if modeled particles in the ocean are washed ashore onto the land, because the stranding must be dependent on nearshore processes that might not be resolved in modeled ocean currents (hence, PTMs) sufficiently. Also, re-drifting processes of stranded particles into the ocean should be incorporated into the PTM; otherwise the estimate of debris quantity on beaches remains unreliable. The webcam monitoring on a beach in Newport, Oregon, provides us with a simple scenario of stranding/re-drifting processes: the debris on the beach increased during the downwelling-favoring winds, and rapidly decreased under the onshore-winds at spring tides by re-drifting. The PTM in the present study consists of two models: one is a PTM to reproduce the JTMD motion in the North Pacific using an ocean reanalysis product (ocean circulation) and satellite-derived winds (leeway drift), and the other is a “sub-model” to give the criterion whether or not the modeled particles are washed ashore on the neighboring land grid cell, and whether or not they return to the oceanic domain from the land. The satellite-derived winds on the grid cells neighboring the land boundary were used for the criterion in the sub-model. In the present study, we attempt to estimate the abundance of JTMD washed ashore on the western coasts of US and Canada during the period 2011 through 2016. We also attempt to find the beaches on which the massive amount of JTMD has been washed ashore to provide a “hazard map” of invasive species. As the results, in total, 30,000 tons of JTMD potentially exists on the US and Canadian beaches at the present time. Furthermore, the model results states that the invasive spacies on the tsunami debris have not washed ashore widely on the entire US and Canadian beaches. They have been washed ashore on the relatively narrow area (<1000 km) around Vancouver Island, which might act as a “gate” of the invasive spacies carried by the tsunami debris.

キーワード: 震災瓦礫、粒子追跡モデル、北米西岸
Keywords: Japanese tsunami marine debris, particle tracking model, western coast of the North America
Effects of high frequency internal waves on the formation of moon jellyfish aggregations

*Takashi Mano¹, Xinyu Guo², Naoki Fujii³, Naoki Yoshie², Hidetaka Takeoka⁴

¹Graduate School of Science and Engineering, Ehime University, ²Center for Marine Environmental Studies, Ehime University, ³Institute of Lowland and Marine Research, Saga University, ⁴South Ehime Fisheries Research Center, Ehime University

ミズクラゲなどいくつかの種類のクラゲはしばしば高密度なパッチ状の集群を形成することが知られている。このような集群は、発電所取水口の閉塞や定置網の破損などの被害を引き起こすことがあり、生態系にも何らかの影響があるのではないかと考えられている。しかし、これまでクラゲのパッチ状集群の形成メカニズムはおろか、その3次元的な形態も詳細には明らかにされていなかった。そこで本研究では、ミズクラゲを対象に計量魚群探知機による観測を行い、クラゲ集群の3次元的な形態の把握を試みた。また、観測海域周辺では10~20分周期の内部波がしばしば観測されることから、この内部波がクラゲ集群の形成に何らかの影響を及ぼしているのではないかと考え、内部波を想定した流動場での粒子追跡計算を行い、集群の形成メカニズムを考察した。

計量魚群探知機（ソニック社製KCE-300、周波数：120kHzおよび38kHz）による観測は、豊後水道に面する愛媛県の法華津湾において2013~2016年の夏季に実施した。その結果、観測された集群の形状は以下の3つのパターンに大別することができた。⑴帯状や塊状で、高密度なパッチ状のもの。Churnside et al.(2015)の観測事例と同様に内部が中空のものも見られ、長さ数百mに及ぶチューブ状の集群もあった。⑵密度躍層と同水深で広範囲に分布する層状のもの。⑶鉛直断面が波状の構造をしたもの。

次に、クラゲ個体が周囲の流れに対して完全に受動的であると仮定して、鉛直2次元の平面上で、法華津湾で観測された週期・波長の内部波を想定した流動場での粒子追跡計算を行った。その結果、⑶の波状の分布と類似した構造が再現されたが、⑴のようなパッチ状の構造は再現できなかった。このことから、⑴のような非常に高密度なパッチ状の構造は流動場の影響だけで形成されたとは考えにくく、クラゲによる積極的な遊泳行動も関与している可能性がある。また、粒子追跡計算の結果はクラゲの餌となる動物プランクトンの分布も表現していると考えると、クラゲのパッチ状集群は捕食のために餌を追いかけてきた結果として形成されたものでもないということが言える。今後、クラゲのパッチ状集群の形成メカニズムを解明するには、クラゲの遊泳行動観察にもとづいた遊泳モデルを流動モデルに組み入れることが必要である。

キーワード：ミズクラゲ、集群、内部波
Keywords: moon jellyfish, aggregation, internal wave
インドネシア・ジャカルタ湾における貧酸素水塊
Hypoxic water mass in Jakarta Bay, Indonesia

*速水 祐一1、森本 昭彦2、Sudaryanto Agus3、Sachoemar Suhendar3、Soeyanto Endro2、Saleh Mochamad4、織田 将太2
*Yuichi Hayami1, Akihiko Morimoto2, Agus Sudaryanto3, Suhendar Sachoemar3, Endro Soeyanto3, Mochamad Saleh4, Shota Oda2

1. 佐賀大学、2. 愛媛大学、3. BPPT, Indonesia、4. Kemenko Maritim, Indonesia

【はじめに】
ジャカルタ湾はジャワ島西部北岸に位置する幅約30km、奥行き約16kmの中規模の湾で、南緯6度と赤道近くに位置する（Fig.1）。湾奥沿岸にはインドネシア最大の都市であるジャカルタがある。ジャカルタの人口は約1000万人で東京に匹敵する。平均水深は15mと浅く、湾内には13本の中河川が流入する（Wouthuyzen et al., 2011）。このうち東岸に流入するCitarum川は西ジャワ州最大の河川である。ジャカルタ湾では定置網漁やミドリイガイ養殖など活発な漁業が行われているが、近年、しばしば大規模な魚類の斃死が発生している。この原因として、貧酸素水塊の湧昇が疑われている（Sachoemar and Wahjono, 2007）。しかし、ジャカルタ湾における溶存酸素濃度のデータは少なく、上記の仮説は確認されていない。さらに、熱帯域、特に赤道域の沿岸海域における貧酸素水塊に関する報告はほとんどない。東京湾・伊勢湾・チェサピーク湾など温帯域における多くの都市沿岸の内湾では、夏季の貧酸素水塊発生が大きな問題になっている。春から夏にかけての海面加熱と河川流量増大が引き起こす成層強化が、これら温帯域内湾の貧酸素水塊形成の引き金になっている。しかし、気温の季節変動がほとんどないなど、熱帯域の気候の季節変動は温帯域と大きく異なる。したがって、ジャカルタ湾で貧酸素水塊が発生しているとすれば、その形成機構は温帯域とは異なる可能性が高い。そこで本研究では、ジャカルタ湾の溶存酸素濃度の季節変動を明らかにするために現地観測を行った。

【方法】
2015年12月から2017年2月にかけて、ジャカルタ湾内の26~29測点において、約3ヶ月毎に6回の水質調査を行った。観測日をTable 1に示す。各回の観測は5〜6時間の間に実施したが、2015年12月のみ2日に分けて観測した。観測では、各点で多項目水質計（JFEアドバンテック製RINKO Profiler、2015年12月のみAAQ1183）を用いて、水温・塩分・溶存酸素濃度・クロロフィル蛍光・濁度の鉛直分布を測定すると共に、セッキー板で透明度を測定した。2016年7月18日に有明海においてRINKO ProfilerとAAQ1183の同時測定をしてインターキャリブレーションを行った。クロロフィル蛍光のみ両測器の測定値に差が見られたので、検量線によってRINKO Profilerの値に統一した。

【結果と考察】
ジャカルタ湾では、6回全ての観測において底層に貧酸素水塊が観測され（Fig.2）、いずれも溶存酸素濃度最低値は2mg/L以下となっていた。これは、ジャカルタ湾では年間を通して酸素水塊が存在することを示唆する。貧酸素水塊の規模や分布は観測時期によって異なった。季節的に見ると、雨期（北西モンスーン）の盛期である2月には、貧酸素化は緩和されていた。一方で、その前の乾期から雨期への移行期である11~12月には、貧酸素水塊は最も発達していた。貧酸素水塊は水深5〜15mの浅海域に分布することが多く、特に湾奥東部に発生することが多かった。2016年5月の湾奥東部沿岸域では、表層でも3mg/L以下の溶存酸素濃度となっていた。これは、貧酸素水塊の湧昇が実際に起きていることを示す。水温成層は年間を通してほとんどなかったが、表層と水温差2℃程度の差しかなかった。それにしても塩分成層は年間存在した。貧酸素化が緩和された2月には成層度が弱まっていた。一方で、11〜12月には水柱は比較的強く成層していた。

赤道域に位置するジャカルタ湾での貧酸素水塊発生は、基本的に年間を通して海面冷却よりも海面加熱が卓越するため、温帯域内湾で秋季〜冬季に起きるような対流による底層までの鉛直混合は生じにくい。ただし、北西モンスーンによる風力・高い波浪により、雨期終期には鉛直混合が起こりやすいと考えられる。その結果、密度成層が弱ま
り、底層への酸素供給が増加するため、貧酸素化が緩和されるものと考えられる。標高があまり高くない地域にある深い熱帯湖沼では永年水温躍層が形成され（oligomictic）（Hutchinson and Loffler, 1956）、それ以深が貧酸素化することが知られている（Lehmusluoto and Machbub, 1995等）。しかし、ジャカルタ湾の場合は、そのような安定な水温躍層は存在せず、水深が浅いにも関わらず、周年にわたって貧酸素水塊が存在する。これは、1）潮位差が1m以下と潮汐混合が強く、河川水の影響を受けるために本海域が成層しやすいこと、2）熱帯域では海面冷却による継続的な鉛直混合が生じにくく、成層が維持されやすいこと、3）おそらく本海域の酸素消費速度がかなり大きいこと、によると考えられる。ジャカルタ湾では1975年から2000年にかけてリシン態リシン濃度が約10倍になり（Arifin, 2004）、湾奥部は超富栄養な環境になっている（Damar, 2003）。また、底層水温は周年で28℃以上と高水温である。したがって、常に活発な有機物分解による大きな酸素消費があると予測される。

今後は、このような季節変動が毎年同じように生じているのかどうか確かめるために継続的な観測を実施すると共に、酸素消費速度の実測と数値モデルによる検討によって、上記の貧酸素水塊形成機構の検証を進めたい。

キーワード：貧酸素水塊、ジャカルタ湾、インドネシア、熱帯、溶存酸素
Keywords: hypoxic water mass, Jakarta Bay, Indonesia, tropical zone, dissolved oxygen
Seasonal variation in hypoxia and its behavior in the Upper Gulf of Thailand

*Morimoto Akihiko, Buranapratheprat Anukul, Mino Yoshihisa, Kaneda Atsushi, Guo Xinyu

Center for Marine Environmental Studies, Ehime University, Faculty of Science, Burapha University, Institute for Space-Earth Environmental Research, Nagoya University, Faculty of Marine Bioscience, Fukui Prefectural University

The Upper Gulf of Thailand is located in the northern part of the Gulf of Thailand and is rich in fisheries because of its high productivity. It is a very important area for the country's fishing industry. In recent years, rapid economic development has led to the influx of large amounts of organic matter and nutrients through four major rivers, which has led to eutrophication and low oxygen concentrations, resulting in the formation of hypoxic areas and red tides in the Gulf. In addition, there are mass die-offs in mussel farms in the northern part of the Gulf, which are thought to be caused by hypoxic conditions. However, there have been few observations of the Gulf's hypoxic areas, and the distribution and seasonal variation of hypoxic areas have not been well documented. In this study, we conducted shipboard observation surveys in the Upper Gulf of Thailand, covering the area from June to November, from 2014 to 2015, a total of seven times. As a result, hypoxic areas were observed from June to November, with dissolved oxygen concentrations in the bottom layer being less than 1 mg/l, indicating an anoxic state. The distribution of hypoxic areas moved from the central area of the Gulf to the northeastern part of the Gulf in June, and in September, the hypoxic area covered about half of the Gulf. In November, the hypoxic area moved northwestern part of the Gulf. A remarkable finding is that the hypoxic area moved from the eastern part of the Gulf to the western part of the Gulf. In the Gulf, which is located in a tropical region, the vertical temperature gradient is small due to the density stratification formed by the influx of freshwater from the rivers. Therefore, we speculate that the hypoxic areas are related to the distribution of low-salinity water from the rivers. In contrast, the concentration of chlorophyll a in the water was positively correlated with oxygen consumption, indicating that organic matter in the water contributes significantly to hypoxic conditions. Although the concentration of nutrients and chlorophyll a were compared to bottom dissolved oxygen concentrations, they were not always consistent. In order to understand the seasonal movement of hypoxic areas, we developed a 3D numerical model. The model was developed to simulate the tidal and wind-driven flows in the Gulf. The model results showed that the hypoxic area moved from the east to the west of the Gulf. In the future, we intend to develop a nutrient-phytoplankton-detritus-oxygen low order ecological model and integrate it into the model. From the model results, the reasons for the formation and movement of hypoxic areas will be presented.
七尾湾西湾における貧酸素水塊の発生・解消過程の観測

Observation of Generation and Disappearance of Hypoxia in the Western Part of Nanao Bay

*奥野 充一1、仙北屋 圭1、大慶 則之1、中田 聡史2、小林 志保3
*Jun-ichi Okuno1, Kei Senbokuya1, Noriyuki Ookei1, Satoshi Nakada2, Shiho Kobayashi3

1. 石川県水産総合センター、2. 神戸大学大学院海事科学研究科、3. 京都大学フィールド科学教育研究センター
1. Ishikawa Prefecture Fisheries Research Center, 2. Kobe University, Graduate School of Maritime Sciences, 3. Kyoto University, Field Science Education and Research Center

七尾湾西湾における貧酸素水塊の発生・解消過程を明らかにするため、2016年6月から10月に調査船による水温、塩分、DOの定点観測および係留による水温、DO、流向・流速の連続観測を実施した。その結果、貧酸素水（溶存酸素濃度2.1 mg/L以下）は6月下旬から10月上旬に確認され、底層では数日スケールで発生と解消を繰り返していることが分かった。また、貧酸素化は数日かけて進行するのに対し、その解消にかかる時間数時間程度であった。6月24日に貧酸素水が確認された事例では、表層のDOに大きな変化はみられなかったが、底層では3日ほどで約8 mg/Lから約2 mg/Lに漸次減少した。23日に実施した観測では塩分成層の形成は河口周辺のみで確認されており、塩分成層が貧酸素の形成に影響する要因ではないと考えられた。また、貧酸素化が進行した6月22日から24日に底層の流速が小さかったことから、流れが停滞し、かつ高温が持続されたことが貧酸素化の要因と推察された。一方、低気圧が日本海で発達したのに伴い、25日に湾内で強い南西風が卓越した。この風に対応し表層では東向きの流れが発生したのに対し、底層ではより強い西向きの流れが発生した。その流れの強まりと伴に底層のDOは上昇し、ほぼ表層の値まで回復した。また、全層で水温の低下がみられたから、強い南西風によって表層水が風下側に吹送され、その補償流として風上側へ向かう底層流が引き起こされた結果、鉛直混合が促進され底層に酸素が供給されたと推察された。

キーワード：七尾湾、貧酸素水塊、気象要因

Keywords: Nanao Bay, Hypoxia, meteorological factor
Fig. 1. Location of observation stations in Nanso Bay (● indicates the CTD observation stations), ■ indicates the temperature, current, and DO continuous mooring observation stations.

Fig. 2. Temporal variations in (a) wind, (b) precipitation at Nanso, and (c) current velocity at the surface layer (1 m), (d) current velocity at the bottom layer (7.5 m), (e) Temperature at the depth of 1 m, 3 m, 5 m, 7 m, 8.5 m, and (f) DO concentration at the surface and bottom layers from June 18 to 26 in 2016.
Monitoring for understanding marine condition in Wakasa Bay: Characteristics of seasonal variation in backscatter intensity measured by ADCP

*Atsushi Kaneda¹, Yasuhiro Yoshikawa¹, Kouta Ayukawa²

¹. Fukui Prefectural University, 2. Fukui Prefectural Fisheries Experimental Station

若狭湾は日本海に面する湾の一つで、岸近くを流れる対馬暖流の影響を強くうける。この海域は、ブリやサワラなどを対象とした定置網漁や、カニなどを対象とした底びき網漁が盛んな好漁場として知られている。近年、漁場環境を把握するためにモニタリングシステムが構築された。このモニタリングシステムでは係留系やリアルタイムブイを用いて水温、塩分、流速などの物理環境が測定され、リアルタイムブイのデータは漁業者に活用されている。この研究では水中の懸濁物量の指標となるADCP(Acoustic Doppler Current Profiler, 超音波多層流向流速計)の反射強度の時間変動に焦点を当て、その変動特性の分析や水温、塩分などの物理観測データや漁獲量データとの比較を行った。解析の結果、ADCPの反射強度は夏季になると弱くなり、同時期に定置網の漁獲量は低下していた。また、そのときの水温や流速のデータは対馬暖流系水が定置網のある沿岸域への波及していたことを示唆したことから、夏季の対馬暖流系水の波及が定置網の一時的な漁獲量低下と密接に関わっていたと考えられた。

キーワード：モニタリングシステム、若狭湾、対馬暖流

Keywords: monitoring system, Wakasa Bay, Tsushima Warm Current
豊後水道の密度場が急潮・底入り潮に与える影響

Influence of Density Field on Kyucho and Bottom Intrusion in the Bungo Channel

*齋藤 類1、武岡 英隆2
*Rui Saito1, Hidetaka Takeoka2

1. 愛媛大学沿岸環境科学研究センター、2. 愛媛大学南予水産研究センター
1. Center for Marine Environmental Studies, Ehime University, 2. South Ehime Fisheries Research Center, Ehime University

九州と四国の間に位置する豊後水道では、流入する2つの密度流（急潮と底入り潮）が発生することを知られている（Takeoka et al., 2000）。急潮は上層への黒潮系暖水の間欠的流入で、底入り潮は陸棚斜面底層を起源とする冷水の下層への間欠的流入である。急潮は黒潮前線上の暖水舌が四国南西岸に衝突することで発生し、鉛直混合が弱まる加熱期と小潮時に水道中部まで流入する。底入り潮は小潮時と黑潮接岸時に流入が確認されているが（兼田ら，2002；Kaneda et al., 2002），その物理過程は良く分かっていない。近年では2013年11月中旬から12月中旬に非常に強い底入り潮が水道南部沿岸（愛媛県福浦湾）で5回確認され、下層水温が繰り返し大きく低下していた（最大: -4.0 °C day^{-1}）。本研究ではこれらの底入り潮を愛媛大学と愛媛漁連の多層水温データを用いて解析した。さらに、愛媛県水産研究センターの定期観測データから算出した水道内部での密度場が豊後水道における流入現象に与える影響を評価した。

2013年晩秋から初冬にかけての豊後水道沿岸の鉛直水温断面を見ると、豊後水道南方の沖の島では全層（深さ45 mまで）を暖水と冷水が交互に通過する現象が見られ、豊後水道最南端の福浦ではこの冷水通過時に強い底入り潮が発生した。また、福浦上層では沖の島での暖水通過後に急潮と認められる水温上昇が見られたが、上昇量は沖の島より抑制されていた。さらに、豊後水道中部へは底入り潮のみが弱まりつつ伝わり、急潮はほとんど伝わっていなかった。このように、底入り潮のみ豊後水道內部へ伝わっていた原因を考察するため、豊後水道の密度場を調査した。その結果、2013年11月の密度は上層では南部の密度が北部より大きく、北部から南部に流出傾向であったため、急潮は抑制される傾向であった。下層では南部の密度が北部よりも大きく、南部から北部へ流量傾向であったため、底入り潮は流入しやすい傾向であった。過去のデータを見ると、10月から11月は南部の上層での高塩分化により、急潮が流入し難い傾向になる年があることがわかった。さらに、12月から翌年4月は北部の季節的な冷却により底入り潮が流入し難い傾向が続く年が多いこともわたった。Kaneda et al., 2002の観測では、1995年12月〜1996年4月まで急潮のみしか発生しない時期が見られていたが、これはこのような豊後水道内部の密度構造によるものと考えられる。

キーワード：底入り潮、急潮、豊後水道、黒潮

Keywords: Bottom intrusion, Kyucho, Bungo Channel, Kuroshio

©2017. Japan Geoscience Union. All Right Reserved. - AOS30-P05 -
キーワード:
Keywords: 豊後水道における栄養塩濃度の季節・経年変化
Seasonal and interannual variations in the nutrient concentrations in the Bungo Channel, Japan

*中川 美和1、郭 新宇2、吉江 直樹2
*Miwa Nakagawa1, Xinyu Guo2, Naoki Yoshie2

1. 愛媛大学大学院理工学研究科、2. 愛媛大学沿岸環境科学研究センター
1. Graduate School of Science and Engineering, Ehime University, 2. Center for Marine Environmental Studies, Ehime University

瀬戸内海西部に位置する豊後水道は、沿岸域と外洋をつなぐ水路である。豊後水道の水温や塩分分布は、外洋から沿岸域への低温・富栄養な黒潮系亜表層水の周期的な進入現象(底入り潮)の影響を強く受けると示唆されている。本研究では豊後水道の栄養塩に着目し、季節的・経年的にどのような変動をするのか明らかにすることを目的とした。

本研究では、1991年から2005年までの愛媛県農林水産研究所水産研究センターにより毎月1回行われている沿岸定線調査より得られた3種類の栄養塩(硝酸塩、リン酸塩、ケイ酸塩)と水温、塩分データを用いて豊後水道の南北断面における時空間変動を解析した。

その結果、硝酸塩濃度は全ての季節において豊後水道南部の陸棚斜面付近で高くなっており、夏季には比較的高濃度の水塊が底層全体にも広がっていた。また、硝酸塩濃度の各季節の経年変化も硝酸塩濃度の高い豊後水道南部の陸棚斜面付近で大きくなっていた。さらに、夏季の豊後水道全域では中層から底層にかけての経年変化が大きくなっていた。これは、底入り潮の経年変動の影響によるものと考えられる。

キーワード：瀬戸内海、現場観測、栄養塩、底入り潮
Keywords: Seto Inland Sea, field observations, nutrients, bottom intrusion
釜石湾における湾口防波堤の破壊と再建にともなう海洋環境変化

Marine Environmental Changes Caused by Destruction and Reconstruction of the Bay-mouth Breakwater

*田中 潔¹、道田 豊¹、柳本 大吾¹、孫 艶枚¹、石津 美穂¹、小家 琢摩¹
*Kiyoshi Tanaka¹, Yutaka Michida¹, Daigo Yanagimoto¹, Yanmei Sun¹, Miho Ishizu¹, Takuma Koie¹

1. 東京大学
1. University of Tokyo

沿岸に位置する釜石湾では、1960年のチリ津波の被害を受けて、世界最大水深（63 m）の湾口防波堤が建設された。ところが、2011年の東日本大震災に伴う巨大津波によって、湾口防波堤は壊滅的に破壊された。しかし、東日本大震災後に再び復旧工事が行われ、現在、それは概ね完成に近づいている。そこで、筆者たちは、そうした湾口防波堤の破壊と再建に伴って、釜石湾内の海洋環境がどのように変化したのかを調べるために、CTDO（塩分・水温・深度・酸素）船舶観測を実施した。その結果、以下のことが分かった。

東日本大震災の前（2009年）は、湾口防波堤は湾内の海況を静穏化する一方で、海洋環境（水質）を悪化させる効果も有していた。すなわち、震災前の秋季（成層期）には、湾口防波堤が湾内と湾外の海水交換を妨げたため、防波堤内側の底層部に貧酸素水が形成されていた。他方、防波堤が破壊されていた震災直後の秋季（2011年）は、湾内と湾外の海水交換が活発化し、そうした貧酸素水の発生が緩和されていた。しかし、防波堤の再建が終了しつつある現在（2015年以降）は、再び貧酸素水が出現し始め、湾内下層の環境は悪化しつつある。

キーワード：海水交換、湾口防波堤、釜石湾、東日本大震
Keywords: Water exchange, Bay-mouth breakwater, Kamaishi Bay, Great East Japan Earthquake

©2017. Japan Geoscience Union. All Right Reserved. - AOS30-P07 -
東日本大震災以降6年間の三陸沿岸大槌湾および主要流入河川における栄養塩環境の変化

Nutrient Status of Otsuchi Bay and the major rivers flowing into it on the Sanriku Coast of Japan: 6 Years after the Great East Japan Earthquake

*福田 秀樹1、楊 燕輝1、高巣 裕之2、永田 俊1

*Hideki FUKUDA1, Yanhui Yang1, Hiroyuki Takasu2, Toshi Nagata1

1. 東京大学 大気海洋研究所、2. 長崎大学大学院 水産・環境科学総合研究科
1. The Atmosphere and Ocean Research Institute, The University of Tokyo, 2. Graduate School of Fisheries and Environmental Sciences, Nagasaki University

2011年3月11日に発生した大地震に伴う大津波の襲来により、三陸沿岸の内湾域では海岸地形や堆積物に対する物理的な攪乱が生じたほか、藻場や干潟の生物群集の流出、養殖筏をはじめとする漁業施設や下水処理施設などの都市機能の損壊など、湾内の物質循環系を取り巻く要因に変化が生じた。これら悲劇的な震災の発生以降、我々は六年間にわたって被害の大きかった岩手県の中ほどにある大槌湾を対象に栄養塩類の分布に対する大津波の影響を検討してきた。大槌湾の水柱内では2011年の夏季に顕著な亜硝酸塩とケイ酸の顕著な蓄積が見られたが、続く11月から翌年の2012年3月までの期間に顕著なリン酸塩の蓄積が見られ、全無機態窒素（TIN）とリン酸塩のモル比（TIN/P比）は震災前の約10から6程度にまで減少した。これらの低TIN/P比は陸起源有機物や堆積物からの相対的にリンの寄与が高い栄養塩類の放出による可能性が考えられる。一方でそれ以降の2014年3月までの期間では、鉛直混合が強まる時期にTIN/P比の平均値は逆に震災前よりも高い12-13へと上昇した。2014年5月以降の混合期においても2016年の初頭までの段階で依然として震災前よりも高い状態が続いていた。発表では2016年度の結果も加えて議論をする予定である。

キーワード：2011年東北地方太平洋沖地震、津波、三陸沿岸域、栄養塩環境

Keywords: the 2011 off the Pacific coast of Tohoku Earthquake, tsunami, Sanriku Coast, Nutrient status
新島和田浜海岸漂着ゴミの1次元岸沖方向拡散係数と砕波帯内における拡散係数の比較
A comparison between the 1D diffusion coefficient of beached litters in the cross-shore direction and surf zone diffusivity off Wadahama beach, Nii-jima Island, Japan

*宮尾 泰幸1, 日向 博文1, 片岡 智哉2, 曽谷 僚太1, 大野 一輝1, 森 啓太1
*Yasuyuki Miyao1, Hirofumi Hinata1, Tomoya Kataoka2, Ryota Soda1, Kazuki Ohno1, Keita Mori1

1. 愛媛大学、2. 東京理科大学
1. Ehime University, 2. Tokyo University of Science

近年、海岸に漂着したプラスチックゴミによる環境汚染が深刻な問題となっている。また、大型のプラスチックゴミによる環境汚染に加えて、数mmのサイズに微細化したプラスチックゴミの問題も懸念されている。海岸に漂着したプラスチックゴミは熱や紫外線の影響を受けて急激に劣化するため、海岸に漂着している時間が長いほど微細化する傾向にある。そこで、プラスチックゴミ微細化のプロセスを理解するためには、プラスチックゴミが海岸に漂着してから再漂流するまでの時間、すなわち、滞留時間を理解する必要がある。先行研究として、ゴミの総量と拡散係数を用いて再漂流過程を拡散方程式で表現する方法が提案されている。すなわち、拡散過程によってゴミが海洋へと再漂流するフラックスを計算する。ここで、海岸漂着ゴミの拡散係数の推定が必要となるが、標識再捕獲実験(Mark-recapture experiment)を実施することで見積もられる滞留時間を推定できる。しかし、この実験には多くの労力と時間を必要とするため、これを世界中の海岸で実施することは事実上不可能である。そこで、沿岸域における物理場の拡散係数と、海岸漂着ゴミの拡散係数を関連付ける方法が提案されている。本研究では、東京都新島村の北西に位置する和田浜海岸における標識再捕獲実験と、中立粒子実験を用いた両拡散係数の推定を行った。そして、両者を比較することで、それらを関連付ける係数を推定した。標識再捕獲実験では、海岸の後浜と前浜に事前に集めた200個のプラスチックフロートを2015年9月17日に配置し、2016年10月23日まで観測を行った。約2か月間隔で海岸調査を行い、散布したプラスチックフロートの残余数を測定した。残余数の時間変化を指数関数に近似して、プラスチックフロートの滞留時間を見積もり、249日となった。そして、滞留時間と海岸幅から見積もられた拡散係数は4.18×10^{-5} m^2/sとなった。さらに、砕波帯内における拡散係数を求めるために、砕波帯を撮影したビデオ画像を利用して中立粒子実験を行い、砕波帯内における粒子の滞留時間から拡散係数を見積もり、本実験で外力となる流速データは、巻き上げられた砂が沖へと輸送される過程を撮影した動画に画像粒子速度測定法を適用して計測されたものである。本講演では各実験の詳細と、プラスチックフロートの拡散係数と砕波帯内における拡散係数を関連付ける係数について詳しく述べる。

キーワード：海岸漂着ゴミ、拡散係数、標識再捕獲実験、中立粒子実験
Keywords: Beached marine debris, Diffusion coefficient, Mark-recapture experiment, Neutral particle experiment

©2017. Japan Geoscience Union. All Right Reserved. - AOS30-P09 -
鉛直混合過程を考慮した生態系モデルにおけるクロロフィルa水平2次元パターン形成

Horizontal two-dimensional pattern formation of chlorophyll-a in ecosystem model with vertical mixing process

*黒田 雄斗¹, 松浦 知徳², 中田 聡史³
*Yuto kuroda¹, Tomonori Matsuura², Satoshi Nakada³

1. 富山大学大学院理工学教育部 2. 富山大学大学院理工学研究部 3. 神戸大学大学院海事科学研究科
1. Graduate School of Science and Engineering for Education, University of Toyama, 2. Graduate School of Science and Engineering for Research, University of Toyama, 3. Graduate School of Maritime Sciences, Kobe University

富山湾では、6月から7月の梅雨期や夏季に表層数mのプランクトンの活動が活発となり、湾内においてクロロフィルaの反時計回りの渦状分布がしばしばみられる（図1）。この特徴的な分布は富山湾の物理過程（移流、拡散）と生態系との関係から形成されると考えられる（黒田・松浦, 2015）が、その詳細な形成・変動メカニズムは未解明である。そこで、衛星画像、海洋観測データ、および海洋物理過程を導入した生態系モデルを用い、この形成・変動の原因解明、特に鉛直混合過程や河川からの栄養塩の流入に着目して取り組むことを研究の目的とする。

本研究では、生態系モデルとして単純なNPZモデルとし、これに水平2次元の移流項、3次元の拡散項を導入した方程式系に対し、差分法を用いて数値的に解くことによって、クロロフィルaのパターン形成メカニズムを調べた。海域の設定としては、富山湾規模の湾を考え100 km x 100 kmの海域で、モデルの水平解像度を2 km x 2 kmとした。モデル計算に関して、水平拡散係数は10^{-5}～10^{-2}(m^{2}/s)の範囲で行った。流れ場は反時計回りの循環場とし、プランクトンのパラメータは、マクロとミクロ、捕食・被食の関係を示す食植速度を変化させて複数の数値実験を行った。数値実験では、河川からの栄養塩の流入を仮定して、モデル領域下方から栄養塩濃度が増えていく状況を設定し、その変化を見た。

富山湾の実態把握と数値実験との比較のためCOMS-GOCI衛星画像による解析も行った。データとしては、2010年〜2014年の4月〜9月までと2015年の4月〜10月1日までのデータである（2012年のみ7月のデータは不足）。

鉛直拡散の無い2次元モデルでの数値実験では、それぞれのパラメータが反時計回りの渦状のパターンの形成が見られた。その反時計回りの渦状のパターンは、形成後徐々に崩れ、次第にモデル領域内の植物プランクトン量は、一様となる変動を示した（図2）。ミクロ動物プランクトンパラメータでは、一様になった後に渦状のパターンが再び見られた。

鉛直拡散を加えた3次元モデルでも同様に表層で反時計回りの渦状のパターンが見られた。しかしながら、鉛直混合により表層から与えられる栄養塩が下層まで達するため、植物プランクトンの濃度は、2次元モデルよりも低下した。さらに、動物プランクトンのパラメータが鉛直拡散係数の大きさの違いによって、最下層まで渦状のパターンが形成されたケースと、形成されないケースが現れた。したがって、動物プランクトン大きさや混合の強さの変化で深さ方向に2次元パターンの変動の違いが現れた。

これらの実験から、富山湾内での渦状のパターンの形成には、河川から供給された栄養塩が反時計回りの流れ場に乗り移り、それを植物プランクトンが消費することによる形成が考えられる。また、湾内に栄養塩が豊富にある時には、プランクトン間の捕食・被食のやりとりが盛んな時に形成することが分かった。

衛星画像データの解析からは、富山湾におけるクロロフィルa濃度分布のパターンは、①沖で高濃度となるパターン、②沿岸で高濃度となるパターン、③黒部川付近から富山湾内に向かって高濃度の部分が発達しているパターン、④渦状のパターンの4つに分類できることが分かった。最後の渦状のパターンは、数値実験における渦状パターンの形成により、メカニズムを説明できる可能性が示された。この解析から本研究で注目している渦状のパターンの形成に関して黒部川付近からの湧水と黒部川からの栄養塩供給が富山湾内の反時計回りの循環場に乗ることにより形成しているのではないかという仮説が出てきた。そのことに関しては今後のモデル研究において調べていく予定である。
キーワード：クロロフィルa、生態系モデル、富山湾、2次元パターン、鉛直混合
Keywords: chlorophyll-a, ecosystem model, Toyama Bay, two dimensional pattern, Vertical mixing

Figure 1
Chlorophyll-a concentration distribution in CCMS-GOCI satellite.

Figure 2
Transition of the phytoplankton concentration distribution in numerical experiment.
(a) Distribution of 100 days
(b) Distribution of 250 days
(c) Distribution of 350 days