An increasing number of Global Navigation Satellite System (GNSS) receivers continuously operating worldwide, makes it possible to observe changes in the ionospheric total electron content (TEC) associated with large earthquakes, e.g. coseismic ionospheric disturbances ~10 minutes after earthquakes by acoustic disturbances (Cahyadi & Heki, 2015). Heki (2011) also found TEC enhancement starting ~40 min before the 2011 Mw9.0 Tohoku-oki earthquake. He also confirmed similar TEC enhancements occurred before all the earthquakes in this century with Mw 8.5 or more (Cahyadi & Heki, 2013; Heki & Enomoto, 2015).

Several papers critical to Heki (2011) have been published during 2013-2015. They claim that (1) the preseismic increase is an artifact popped up by defining the reference curves using the data after earthquakes, and (2) the anomalies originate from geomagnetic activities rather than earthquakes. In our rebuttals papers (Heki & Enomoto, 2013; 2014; 2015), we demonstrated statistical significance of the preseismic increases of vertical TEC rates. We also counted the occurrences of similar changes in TEC caused by space weather during times of no earthquakes and demonstrated it statistically unrealistic to attribute all the observed preseismic anomalies to space weather.

Recently, He and Heki (2016) analyzed the spatial distribution of preseismic ionospheric anomalies of 3 large earthquakes in Chile, i.e. the 2010 Maule, the 2014 Iquique, and the 2015 Illapel earthquakes. There, both positive and negative anomalies started simultaneously at altitudes of ~200 km and ~400 km, respectively, with 3-D structure similar to Kuo et al. (2014) predicted as the ionospheric response to positive electric charges on the ground.

We found three different kinds of Mw dependence of the anomalies so far. At first, Heki and Enomoto (2015) found that the amount of the preseismic VTEC rate changes depend on Mw and background VTEC, i.e. larger precursors occur before larger earthquakes under similar background VTEC. Secondly, Heki and Enomoto (2015) found that earthquakes with larger Mw tend to have longer precursor times (i.e. tend to start earlier). Third, He and Heki (2016) showed that the anomalies of larger earthquakes have larger spatial dimensions. In the latest work, He and Heki (submitted) studied 32 earthquakes with Mw7.0-8.0 in this century, and found that 8 earthquakes showed possible preseismic changes starting 20-10 minutes before earthquakes. We could observe them before Mw7.0-8.0 earthquakes when background VTEC are large, say over 50 TECU.

References
He, L., and K. Heki (submitted), Ionospheric anomalies immediately before Mw 7.0-8.0 earthquakes, JGR Space Phys., submitted.
He, L., and K. Heki (2016), Three-dimensional distribution of ionospheric anomalies prior to three large earthquakes in Chile, GRL, 43(14), 7287-7293.
Heki, K. (2011), Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, GRL, 38(17), L17312.


Heki, K., and Y. Enomoto (2015), Mw dependence of the preseismic ionospheric electron enhancements, JGR Space Phys., 120, 7006-7020.


キーワード：地震前兆、電離圏全電子数、全地球測位システム

Keywords: earthquake precursor, TEC, GNSS, GPS
An Automatic Landslide Detection Technique Using Deep Convolutional Neural Networks and Orthophoto

*Biswajet Pradhan*

1. Department of Civil Engineering, Geospatial Information Science Research Center (GISRC), Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia

Deep learning machine algorithms learn representations of data with multiple levels of abstraction; have recently gained significant attentions in machine learning and geoscience communities. Yet their strengths have not been broadly explored in natural hazard mapping and modeling. In particular, deep convolutional neural networks (DCNN) is a category of deep learning that is suitable for object detection and can achieve reliable accuracy. This paper presents an automatic landslide detection in tropical regions using DCNN trained on a manually prepared dataset from a grayscale orthophoto acquired over Cameron Highlands, Malaysia. The proposed model has a simple architecture including an input layer with (28 ×28) nodes, two convolution and two pooling layers, followed by two fully connected layers. The probabilities of the classes were calculated with a Softmax layer. To apply the DCNN, a number of proposals (i.e. probable targets) were first selected from the input image using a baseline technique called sliding window method. Then, low level features were extracted from each selected proposal and sent out to the deep network. After that, high-level features were learned by the deep network and used to classify the proposals and detect landslide objects in the input image. Experimental results show that the proposed landslide detection based on DCNN can achieve an overall accuracy of 78%. In addition, a comparative study with one-layer neural network (NN), support vector machine (SVM), and logistic regression (LR), showed that the proposed model outperforms NN (57%) and LR (77%) and achieves accuracy comparable to that achieved by SVM (78%) method. Overall, this study successfully applied deep learning algorithm in landslide mapping and modelling as well as to creating standard large-scale landslide inventory datasets that can help advancing this field by further research.

Keywords: landslide detection, LiDAR, Deep Convolutional Neural Networks, Orthophoto, GIS
A Syncro Floodwater Index for Flood Risk Mapping using Multiple Satellite Data: A Case Study of 2015 Bangladesh Flood

*Youngjoo Kwak¹, Jonggeol Park², Wataru Takeuchi³, Yoichi Iwami¹

1. ICHARM (International Centre for Water Hazard And Risk Management), 2. Tokyo University of Information Sciences, 3. The University of Tokyo

In January 2015, the Government of Japan addressed the new space policy, "Basic Plan for Space Policy," which emphasizes the development and utilization of outer space in recognition of increasing demands for safety and security including recovery from the Great East Japan Earthquake. In this context, remote sensing technology is expected to play a central role in more effective and accurate disaster risk reduction and restoration.

The purpose of this study was to provide a rapid and accurate flood mapping of temporal changes in the extent of annual flooding for a transboundary river basin. We proposed the Syncro Floodwater Index (SFwI) to detect widespread inundation extent in a transboundary river basin using the different sensors obtained by NASA's Moderate Resolution Imaging Spectrometer (MODIS MOD09A1), JAXA's new L-band SAR satellite ALOS-2 (PALSAR-2), and JMA's Multi-functional Transport Satellite series (HIMAWARI-8). After removing clouds using the White-object Index (WOI), the SFwI coupled with land surface temperature (LST: MOD11A1) data and in-situ water level data was applied to the 2015 Bangladesh flood for near-real-time nationwide rapid flood monitoring.

The preliminary results showed that the estimated maximum inundation area from MODIS-derived SFwI was smaller than the area from the solo use of modified land surface water index (MLSWI) that was 32% (29,900 km²) of the total area of Bangladesh. We also addressed that the new hybrid approach based on SFwI has showed the possibility of a major contributor in international flood monitoring by means of the integration of multiple satellite data, despite different time and spatial resolutions. The SFwI was particularly designed to enhance advantages of SAR data to overcome disadvantages of the multiple optical satellite images by the hybrid image fusion for integration of SAR and optical satellite.

With recent advances in satellite data, this scheme for a rapid flood mapping will help provide stakeholders with important information to support not only the development of a national policy but also the implementation of international cooperation for disaster risk management. At the same time, these results are important to evaluate for validation of hydrological model simulation output such as flood inundation area in the national-level flood risk.

Keywords: flood mapping, Syncro-floodwater index, MODIS, ALOS-2, Himawari-8
Variability of Meteorological Parameters and Their Association with the Vegetation Stress during 2001-2016 in Brazil Using Satellite Data

*Fernando Silva¹, Samara Azevedo², Ramesh Singh¹, Felix Kogan ³

1. School of Life and Environmental Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA, 2. Postgraduate Program in Cartographic Sciences, Department of Cartography, Univ. Estadual Paulista, FCT-UNESP, 19060-900, Campus Presidente Prudente-SP, Brazil, 3. National Oceanic and Atmospheric Administration, National Environmental Satellite Data and Information Services, Center for Satellite Applications and Research, College Park, MD, USA

With growing populations, hydrological cycles are severely impacting megacities. Water collection systems in these cities are being affected by extensive population growth. In general, increasing atmospheric pollution is directly and indirectly related to population growth. In mega cities, due to increasing pollution, the meteorological parameters, surface and air temperature, water vapor and rainfall are severely affected which also correlates with vegetation growth and crop yield. We have carried out a detailed analysis of multiple satellite data sets between 2001-2016 and studied surface, atmospheric, meteorological parameters, and water vapor from GPS stations deployed in various locations throughout Brazil. Our detailed analysis of satellite data in varying regions in the north-east, north-west and mid regions of Brazil show dramatic changes in meteorological parameters. These changes have one to one correspondence with the vegetation index during period 2001-2016. The meteorological conditions (relative humidity, water vapor, surface and air temperature) are found to be very dynamic over the years, the pronounced changes in these parameters show the cause of drought in different regions of Brazil especially in Sao Paulo and north-eastern parts of Brazil. We have also analyzed LANDSAT images over the past years that show pronounced changes in water reservoirs throughout the drought affected regions. Our detailed analysis shows shift in the climate patterns, thus, cities face new challenges in regards to their sustainable water management practices. We have also analyzed sea surface temperature of the adjacent ocean and found pronounced relations between the sea surface temperature and vegetation growth which could be associated with a strong El-Nino between 2015-2016. Additional analysis of Vegetation Health (VH) data derived from observations of NOAA operational polar-orbiting satellites during a strong 2015-2016 El Nino indicated that northern Brazil was under intensive vegetation stress. A similar situation was observed during two other strong El Nino cases in 1997-98 and 1982-83. During La Nina, northern Brazil was normally wet.

Keywords: Hydrology, Satellite Data, Water Storage, Vegetation Index
Detection and simulation of long-term land-air changes induced by wildfires in the United States

*Yongqiang Liu¹, Xianjun Hao, John Qu

1. US Forest Service

Wildfire is a severe natural hazard in the United States. One of the damages from wildfires is removal of vegetation. This can further lead to anomalies in local and regional climate. This study investigates the changes in the land-air system caused by some large wildfires in the United States using data analysis and modeling technique. Satellite remote sensing was used to quantitatively evaluate the land-surface changes. It was found that the changes in land-surface properties induced by mega-fires are very complex, depending on vegetation type and coverage, climate type, season and year after fires. The changes in LAI (and NDVI to a less degree) are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Large increases in day-time temperature are found, mainly in summer, while nigh-time temperature changes have various patterns. The changes are larger in magnitude in forested lands than shrub / grassland lands. A parameterization scheme was developed based on the detected post-fire changes. The changes were decomposed into trend and fluctuation. The trend was described using a natural exponential function. The fluctuation included periodic variations determined by the Fourier analysis with their amplitudes determined by natural exponential functions. The final algorithm was a combination of the trend, period, and amplitude functions. This scheme was further used with climate and earth system modeling to simulate the local and regional climate effects of wildfires.

Keywords: wildfire, land-surface, climate, remote sensing, modeling
Tropical Cyclone Risk Mapping Using Remote Sensing and Spatial Analysis: Application to a Coastal Upazila in Bangladesh

*Muhammad Al-Amin Hoque¹,², Stuart Phinn¹, Chris Roelfsema¹, Iraphne Childs³

1. Remote Sensing Research Centre, School of Earth and Environmental Sciences, University of Queensland, Brisbane, QLD 4072, Australia, 2. Department of Geography and Environment, Jagannath University, Dhaka-1100, Bangladesh, 3. Queensland Centre for Population Research, School of Earth and Environmental Sciences, University of Queensland, Brisbane, QLD 4072, Australia

Tropical cyclones are a common and devastating natural disasters for tropical coastal regions globally. The intensity and extent of damage by tropical cyclones are very high. An appropriate mapping approach is essential for producing risk assessments to reduce the impacts of cyclones on people, property and the environment. The present study developed and tested a risk mapping approach for tropical cyclone impacts in Sarankhola Upazila, a 151 km² local government area in coastal Bangladesh. The approach incorporated remote sensing and spatial analysis, field data and multi-criteria evaluation. Fourteen criteria under three risk components: hazard, vulnerability and mitigation capacity were assessed. Thematic raster map layers quantifying the level of risk were prepared for every criteria using Analytical Hierarchy Process (AHP) approach. A weighted overlay technique was used for overlaying standardized criteria maps under each risk components with their weights to produce the individual risk components maps and then finally risk map. Our results indicated that 6% of the study area was located in the very high risk zone, mostly close to the coastal river, with 16 % area as high risk zone and around 28 % area was at moderate risk zone. The area was classified as low and very low hazard zone accounts the 26% and 23%, respectively, mostly towards inland from the coast. Our results were validated by comparison to a map of previous cyclone impacts. Critical assessment of our findings demonstrate the approach may have more widespread applicability for assessing tropical cyclone risks in similar coastal environments for the purposes of disaster planning and management.

Keywords: Tropical cyclone, Vulnerability, Hazard, Remote sensing, Spatial analysis, Analytical hierarchy process
Characteristics of aerosol and meteorological parameters during the dust event of 15 April 2015 over Beijing, China

*sheng zheng\(^1\), Ramesh P. Singh\(^2\)

1. Department of Land Management, Zhejiang University, 2. School of Life and Environmental Sciences, Schmid College of Science and Technology, Chapman University

Dust season is prevalent every year during spring season (March-May) affecting the northeastern parts of China. On 15 April 2015, the capital of China, Beijing was hit by the worst dust storm event in decade. The China Meteorological Administration issued a yellow sandstorm alert, the third-most serious danger level, where visibility was reduced below 1,000 meters and air pollution increased. The concentration of PM\(_{10}\) in some areas of Beijing exceeded more than 1,000 \(\mu g/m^3\), which is considered hazardous for people’s health. Multi-satellite sensors are capable of monitoring transport and providing optical information about the dust and changes in atmospheric parameters associated with the transport of dust. The back trajectory clearly shows the source and dust track, 48 h before reaching Beijing. The source of air mass over Beijing is originated from Inner Mongolia and the border of China and Mongolia regions. The track of the dust storm reaching Beijing is from northwest. The detailed aerosol properties including aerosol size distribution (ASD) and single scattering albedo (SSA) from AERONET, and meteorological parameters including CO volume mixing ratio (COVMR), H\(_2\)O mass mixing ratio (H\(_2\)OMMR), relative humidity (RH), and O\(_3\) volume mixing ratio (O\(_3\)VMR) from Atmospheric Infrared Sounder (AIRS) are analyzed in detail.

The ASD in coarse mode shows dominance over fine mode, indicating presence of mineral dust particles during dust storm events. The SSA increases with higher wavelength on the dusty days, and is found to be higher compared to the days prior to and after the dust events, indicating the presence of scattering and larger size particles.

During the dusty days, COVMR decreased from the surface up to mid altitude compared with the non-dusty days. An increase in the H\(_2\)OMMR is observed during the dusty days at the higher altitudes equivalent to the pressure levels 500 and 700 hPa. The mid altitude RH is also observed to decrease at the pressure levels 700 and 925 hPa during dusty days. With the onset of the dust storm event, the RH is obviously lower at the surface level. Airborne dust particles could cause significant radiative heating at shorter wavelengths and cooling at longer wavelengths, which in turns influence the temperature profile in the atmosphere. The change of temperature will cause the pronounced changes in RH at the mid altitude. In addition, dust may contain more hygroscopic chemical component, as a result RH is reduced due to the absorption of water by dust aerosols. O\(_3\)VMR concentrations enhanced at the increasing altitudes (at the low pressure levels) and decreased near the surface at the pressure levels 500-925 hPa due to dust storms. The detailed characteristics of atmospheric parameters along the track of dust events from the source will be presented. A comparative study of aerosol parameters associated with the dust events at other parts with different environmental settings will be also discussed.

Keywords: Dust storm, AERONET, AIRS, Beijing
Land Cover Mapping in an Urbanized Volcanic Area: Taal, Philippines

*Leslie Jamie Cajipe Cobar¹, Kenlo Nishida Nasahara¹

1. University of Tsukuba

Despite the hazards, the population within active volcanic areas has been increasing. Urbanization in these areas result to changes in land cover and increase of communities at risk. Thus, an accurate understanding of land cover in volcanic areas is necessary. Satellite remote sensing and geographic information systems have been used for land cover mapping for resources and land use planning. However, there are not so much studies concentrating on volcanic areas, especially in the developing countries. High quality reference data also contribute to better classification. This study seeks to map the land cover of Taal volcanic area in Batangas province, Philippines. It is one of the 12 Decade Volcanoes of the world having a reputation for being dangerous and worthy of study, and where the tourism industry has been progressing. LANDSAT 8 OLI/TIRS 2016 satellite image and ground truth photos were utilized for the analysis. The International Geosphere-Biosphere Programme (IGBP) system was used to categorize the land cover types. The Maximum Likelihood Classification algorithm was facilitated for the classification and accuracies were also calculated. The percentage of land cover classes will be presented, focusing on the urban or built up areas and its proximity to the hazard zones of the volcano.

Keywords: Volcano, Hazards, Land Cover
Snow Cover Spatio-temporal Patterns in the Tibetan Plateau based on Long Term Satellite Data

*Hang Yin¹,², Chunxiang Cao¹, Ramesh P. Singh³, Wei Chen¹

1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2. University of Chinese Academy of Sciences, 3. School of Earth and Environmental Sciences, Schmid College of Science and Technology, Chapman University

Snow cover is an important parameter in investigations of climate, surface radiation budget and hydrology cycle. The Tibetan Plateau (TP) is one of the coldest places on the earth. In global scale, the long term characteristics of snow cover on the TP can support the analysis of the climate of our country and the Asian summer monsoon, even the global changes. In regional scale, it has great significance for the water supply of pastoral ecosystem, snow damage forecasting and flood forecasting. In the study, we developed an alternative approach with dynamic thresholds to produce snow cover products (1982-2012). Based on these products we analyzed the spatial and temporal variability in snow cover in the TP. The results are as follows: (1) Based on LTDR data and digital elevation model, we built a snow inversion model. The classification algorithm correctly identified the snow class at all stations in 93.9% of the cases. The classification quality reached a very good level (K=0.765). (2) For the entire TP, the monthly mean snow cover area (SCA) exhibited a bimodal distribution, with the maximum cover (29.4%) occurred in March, and the minimum cover (6.3%) in September. The SCA shows a steady decreasing trend from March to August and a steady increasing trend from September to next January. For the spatial variation, the four semi-arid ecological zones exhibited the same variation trend, while the humid/semi-humid ecological zone shows a clearly time lag. (3) According to YSCA statistic data, we found 1982, 1984, 1990, 1997, 1998, 2003 and 2007 were abnormal snow cover year which can be associated to the former study. For the entire TP, the high snow cover occurred in 1982, 1997 and 2007, while vale values happened in 1984, 1990, 1998 and 2003. We divided the study period into two parts for the analysis over the all nine Eco-geographic regions (EGR). Comparing each EGR, we found HID1, HC1, HC2, HIB1 have a good agreement in the variation trend. We calculated annual SCD anomalies and showed the result as two terms according to YSCA variation characteristics. The central area of the TP was more changeable. This area was distributed around Tanggula mountains (Mts), also four Eco-geographic regions: HC1, HIB1, the west both HID1 and HC2. Nyainqangtangha Mts, Himalayas Mts and the west of Kunlun Mts had snow covers in most years, whereas the Qaidam basin and the southern Tibet valley (the deep valley between Himalayas and Gandise) exhibited were snow-free in most years. (4) Based on snow cover onset date and snow cover melted date for the completion of the TP, we found that snow phenology did not show zonal characteristics on latitude. Besides, snow cover begins or finishes melting from the hinterland of the Qinghai-Tibet Plateau to other areas. (5) Regressed YSCA with air temperature and precipitation, the relativity with temperature was negative in HC1, HIB1, HC2 and HIA/B1 in snow-fall season (autumn and winter) and the relativity with precipitation was positive in HC1, HID3, HC2, HIB1, HIIC2 and HIA/B1 in winter while the relationship of both temperature and precipitation is insignificant in spring probably due to relative high temperature in the snow-melt season. (6) By the comparison of snow distribution characteristics of each ecological zone, the results showed: Qinghai-Tibet Plateau Tanggula and its adjacent areas, the four semi-arid ecosystems partition, had the similar inter-annual fluctuation. These areas also showed a significantly negative correlation with temperature and a positive correlation with precipitation. It should be pointed that these areas included the source of the Yangtze River and the Yellow River (the Sanjiangyuan region), and the main grazing area, therefore, the research results exhibited a great benefit for the flood and snow disaster prediction.
Keywords: the Tibetan Plateau, snow cover, spatio-temporal patterns
In our previous study, we developed a low-cost poor-visibility meter (~¥500,00) for hyper-densely observation of blowing snow. Our developed instrument works as a reduced intensity of light when snow particles block off. We used semiconducting laser for the light source (~¥500). The laser beam is reflected three times by using mirrors and it enables us to make compact instrument with enough length of light path. Our developed system has a capability of extending a hyper-densely observation in real-time using wireless network. Our study aims performance evaluation of the low-cost poor-visibility meter for hyper-densely observation of blowing snow in the condition of artificial and natural one. We have checked the correlation between the reduced laser intensity taken by our system and the visibility recorded by conventional video camera simultaneously; the visibility corresponds to the pixel intensity obtained from the movie (1 frame/30sec, 8-bit). Natural (Artificial) blowing snow was measured in Sapporo City (Cryospheric Environment Simulator of the Shinjo Branch, Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Prevention in Shinjo city). The wind velocity was 10-15m/s and temperature was from -4℃ to -15℃. We have performed theoretical analysis for the relation between the laser intensity and the poor visibility based on our original formulation. The resultant value for the correlation coefficient in artificial blowing snow was 0.95. In conclusion, we have conducted the performance evaluation of the low-cost poor-visibility meter for hyper-densely observation of blowing snow, having a potential of hyper-densely monitoring on wireless network, and have made sure the practicability.
Development for polarization monitoring method of black ice area on roads

*Miho Ikeda*¹, Kamada Rena¹, Youhei Kawase², Kuriki Murahashi³, Lucy Lahrita², Hiroshi Kawamata¹, Hiroshi Kawamata¹, Nobuyasu Naruse⁵, Yukihiro Takahashi¹,³

¹. 北海道大学グローバルサイエンスキャンパス、2. 北海道大学大学院農学研究院、3. 北海道大学大学院理学研究院、4. 北海道大学高等教育推進機構、5. 滋賀医科大学

1. Global Science Campus, Hokkaido University, 2. Graduate School of Agriculture, Hokkaido University, 3. Graduate School of Science, Hokkaido University, 4. Institute for the Advancement of Higher Education, Hokkaido University, 5. Shiga University of Medical Science

The fatal accidents on the frozen road including black ice occupy about twenty-five percent of all the traffic accidents. The melted snow and raindrop frozen in snow area, black ice is sheeted on the road by large temperature differences in the morning and the evening. The partially frozen road due to black ice looks like just a wet road, causing the difficult identification of black ice. In several previous studies the polarization dependence of brightness was useful to identify the road surface. However, they can predict only in point, not in area. Here, we developed method for monitoring a area with or without black ice in extensive.

The polarization experiment was performed for water and ice surface (1) in the flat trays and (2) on the rough asphalt mat. Then, we took the photo by camera which attached polarization filter (figure 1). The light source placed in front of camera, and both incident under same degrees to the center of case. It is an ideal condition to see the polarization effect between water and ice. We cut the area of photo where was the strong reflection caused, and compared. Next we used asphalt mat made of same raw materials as real popular asphalt road. The light source and camera placed same position and degrees. We made similar situation like wet road and icy road to be distinguished eventually.

The result of first experiment which to take the photo of flat water surface and icy one, we could find the differences between water and ice (figure 2). The brightness value of flat water surface is uniform and indicated almost the same value. On the contrary, the brightness value of ice surface is not uniform because of rough surface. It means our method which use the polarization and brightness value is useful, in order to distinguish flat water surface to ice surface. Secondly, verified the result of experiment by using asphalt mat. According to our hypothesis based on first experiment, we thought the result would be different between wet and icy mat surface condition. The result was almost as the hypothesis. We could see the differences of brightness between wet mat and icy mat.

In conclusion, the new combined method between polarization and brightness is conducted to distinguish wet mat with icy one. The polarization degree is highly depends on the incident angle of light source and receiver, camera for instance. Therefore we have to divide the area according to the incident angle of light source, then we statute each brightness value which able to separate wet and ice in respective small area. In order to distinguish wet road and icy road at the wide area, we plan to gather the angle-sensitive data to incident angle and azimuth among light source, objective and camera.
キーワード：ブラックアイスパーン、偏光
Keywords: Black ice, polarization
Risk Prediction of Sudden Oak Death (SOD) in China under Different Trends of Future Climate Change

*Houzhi Jiang\(^1,2\), Chunxiang Cao\(^1\), Wei Chen\(^1\), Di Liu\(^1,2\), Yuxing Zhang\(^3\), Yongfeng Dang\(^3\), Xuejun Wang\(^3\), Wei Wang\(^3\)

1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2. University of Chinese Academy of Sciences, 3. Academy of Forest Inventory and Planning, State Forestry Administration

Sudden Oak Death (SOD) is one of the most serious plant diseases in the west coast of the United States and Europe. In the USA, SOD is mainly found in California and Oregon, and in Europe they occurred in UK, Spain, Germany and France. SOD is caused by *Phytophthora ramorum* (*P. ramor*). The spores of the SOD can be transmitted by water, wind and soil to other host plants. SOD have more than 100 kinds of host plants and most of them can be found in China (e.g. Viburnum, Lonicera, Photinia serrulata). China has similar environment and climate conditions to those of SOD epidemic areas. If SOD broke out in China, it will cause ecological disaster and huge economic losses. Therefore, it is necessary to predict the potential risk of SOD in China.

The Maxent model is a machine learning method that estimates the distribution of species through the distribution of the maximum entropy. In the 5th assessment report, the IPCC identified four possible trends of future climate change scenarios based on greenhouse gas (GHG) emission patterns, namely RCP26, RCP45, RCP60 and RCP85. In this study, Maxent model, meteorological data of 2000 and two types of climate change trends (RCP45, RCP85) were used to predict the potential risk of SOD in China. Then statistical analysis of the results were obtained.

The results showed that the risk area is mainly concentrated in the central and southern regions of China. In 2050, compared with 2000, the whole of China’s low risk area will be decreased (-22.31% in RCP45, -42.72% in RCP85), but high risk area will be increased (193.41% in RCP45, 245.90% in RCP85). In 2070, compared with 2050, the whole of China’s low risk area will be decreased by 8.57% in RCP45 and increased 97.52% in RCP85, high risk area will be increased 26.06% in RCP45 and decreased 25.65% in RCP85.

Potential risk area of SOD mainly concentrated in 8 provinces of Guangdong, Guangxi, Hunan, Hubei, Jiangxi, Anhui, Zhejiang, and Fujian. Under the first trends of future climate change (RCP45), from 2000 to 2070, almost all provinces with low risk areas will be decreased while high risk areas will be increased. Compared with 2000, the increase of high-risk areas in the central provinces is higher than that of the southern provinces, for example, Guangdong provinces and Guangxi province increased by 123.35%, 126.15% in 2050, and increased by 191.89%, 158.34% in 2070, but Jiangxi province and Anhui province increased by 717.86%, 236.66% in 2050 increased by 756.88%, 291.20% in 2070. Under the second trends of future climate change (RCP85), from 2000 to 2070 almost all provinces with low risk areas will be decreased first and then increased, while high risk areas are increased first then decreased. In all trends of future climate change, Jiangxi, Hunan, Fujian and Zhejiang provinces all have high risk of SOD outbreak.

Keywords: Sudden Oak Death, Maxent, Future climate scenario, China