The first billion years of the geodynamo

*John Anthony Tarduno*¹,²,³, Rory D Cottrell¹, Richard K Bono¹, Eric Thern⁴, Hirokuni Oda³


Paleomagnetic data from single silicate crystals hosting magnetic inclusions, and rocks whose magnetization is dominated by single silicates with magnetic inclusions, provide a consistent picture of a strong geomagnetic field, within 50% of the present day field strength, during Archean to Paleoarchean times (3.45 Ga) without sign of interruption (although large time intervals remain unsampled). Paleomagnetic investigation of Eoarchean to Hadean zircons, bearing magnetic inclusions from the Jack Hills (JH) of Western Australia, suggest the presence of an even older geodynamo, as old as 4.2 Ga. The natural remanent magnetizations of these these zircons are reproducible, when measured with an ultrasensitive small bore SQUID magnetometer and a scanning SQUID microscope. New Li data suggest that Hadean zircons studied by Tarduno et al. (2015) have not been reheated above ~500 °C since their formation, supporting prior conclusions based on SHRIMP analyses that these zircons preserve a primary remanence. Novel techniques developed by our group provide evidence for multiple magnetic source regions within these zircons. New paleomagnetic data from an Eoarchean to Hadean-bearing zircon locality of the Southern Cross Terrane of Western Australia, >400 kilometers from the Jack Hills, pass a microconglomerate test, yield preliminary paleointensities of ~4-27 microTesla, and thus further support the presence of a very ancient geodynamo. Here we will review the Archean to Hadean geomagnetic record, our recent tests of its fidelity, and its implications for the early evolution of the core and atmosphere.

Keywords: Geodynamo, Hadean, Zircons, Core, Paleointensity, Magnetic shielding
To study the evolution of the geomagnetic field and its relationship to the thermal evolution of the Earth and mantle convection, the long-term behavior of the geomagnetic field should be emphasized. Granitic rocks could be good candidates to investigate the long-term evolution of the geomagnetic paleointensity because their long cooling times can average out relatively short-term fluctuations of the geomagnetic field. However, paleomagnetic measurements of granitic rocks are often disturbed by alteration like weathering and lightning, and the effects of multi-domain state magnetite. Recently, several research groups have investigated paleointensities from single crystals of primary minerals such as plagioclase, pyroxene, zircon and quartz for their potential to avoid difficulties that frequently plague whole-rock measurements (e.g. Tarduno et al., 2007; Usui et al., 2015; Sato et al., 2015). To provide solid ground for single silicate crystal paleomagnetism, paleointensity and rock-magnetic properties of single crystals should be systematically studied and compared to those of the host granitic rock.

We separated zircons, quartz and plagioclases from a Cretaceous granite sample whose whole-rock paleointensity and rock-magnetic properties were studied previously, and found to be particularly stable and reproducible (100 Ma, Wakabayashi et al., 2006; Tsunakawa et al., 2009). Superconducting quantum interference device (SQUID) magnetometer and magnetic property measurement system (MPMS) were used to measure natural remanent magnetization (NRM), isothermal remanent magnetization (IRM), thermal remanent magnetization (TRM), anhysteretic remanent magnetization (ARM) and low temperature magnetic properties of the single crystals.

Zircons with grain size of >100 μm were selected for measurements. Less than 1% of them had NRM intensity larger than 10 pAm$^2$. Low temperature magnetic properties and stepwise thermal demagnetization suggested that the major magnetic carrier of these zircons were pyrrhotite, and thus, the zircons are inappropriate for the paleointensity study. Quartz showed similar NRM intensity distribution with zircons. However, some quartz grains showed similar blocking temperature profiles with the host-rock, and primary magnetization components were detected on the orthogonal projections, indicating that these quartz could be suitable for paleointensity study. 44% of plagioclases had NRM intensity greater than 10 pAm$^2$. Their NRM/IRM ratio and low-temperature magnetic properties suggested the existence of tiny magnetite inclusions possibly exsolved from plagioclase. We performed paleointensity measurements by the Tsunakawa-Shaw method (Yamamoto et al., 2003) to four plagioclase crystals. The obtained paleointensities (46-77 μT) were consistent with the reported whole-rock paleointensity.
Depth variations of paleointensities in lava flows from Izu-Oshima revisited

*福間 浩司
*Koji Fukuma

1. 同志社大学理工学部環境システム学科
1. Department of Environmental System Science, Faculty of Science and Engineering, Doshisha University

Reliable paleointensity data from lava flows are still difficult to be obtained compared to those from archeological materials. Since Nagata, Arai and Momose [1963] deduced paleointensities from basalt lava flows in Izu-Ohshima volcanic island for the past 1000 years, the paleointensity data have been accepted as representing the vector secular variation of the geomagnetic field in Japan [Yoshihara et al., 2003]. Although the directional secular variation from Izu-Oshima is concordant with archeomagnetic data and historical geomagnetic model gufm1, the paleointensities of Nagata et al. [1963] and Yoshihara et al. [2003] gave discordant values to each other even for same lava flows by several tens of percent and to those from archeological materials.

I collected paleomagnetic drill cores or hand samples from vertical sections of several lava flows erupted during the past 700 years. At some sites I could find drill holes of Nagata et al. [1963] and Yoshihara et al. [2003] and retrieved drill cores next to the holes. The lava flows were relatively thin (usually lava thickness < 1 m) and the entire sections can be recovered. Especially I focused on upper and lower clinkers for sampling even if orienting device was not possible to use.

Thellier paleointensity measurements were performed using a fully automated magnetometer-furnace system tspin for about 150 specimens. I chose appropriate temperature steps for each specimen based on the thermomagnetic curve that was quite variable depending on the vertical position within a lava flow. Grain size inferred from hysteresis parameters also systematically changed according to the vertical position: smaller grain size in upper and lower clinkers and larger grain size in lava’s interior.

I could not find linear segments on Arai diagrams for most of the measured specimens; Upward concave, two-segment or sigmoid curves are common. Exceptionally linear segments were observed for a small number of upper or lower clinker samples that have very high Mr/Ms (~0.5) indicating single domain grains. However, any samples from lava’s interior of the same vertical sections did not show linear segments. Sometimes slightly upward concave curves seem to be straight, giving erroneously high paleointensities.

Drill cores collected near remnant drill holes of Nagata et al. [1963] and Yoshihara et al. [2003] did not provide any paleointensity data. These cores come from lava’s interior and no linear segment was identified on Arai diagrams. Therefore the existing intensity secular variation from Izu-Oshima lava flows must be taken with great caution. This finding also suggests that Thellier paleointensity data from lava interiors need to be reexamined.

キーワード：古地磁気学強度、地磁気永年変化、磁気ヒステリシス、キュリー点
Keywords: paleointensity, geomagnetic secular variation, hysteresis properties, Curie temperature
Further archeointensity study on potteries fired in the reconstructed ancient kiln in Japan

*Yuhji Yamamoto¹, Yu Kitahara², Tadahiro Hatakeyama³, Nobuyoshi Natsuhara⁴

¹Center for Advanced Marine Core Research, Kochi University, 2. Graduate School of Integrated Science for Global Society, Kyushu University, 3. Information Processing Center, Okayama University of Science, 4. Natsuhara Giken

Yamamoto et al. (2015) reported that baked clay samples from the floor of a reconstructed ancient kiln provided a reliable archeointensity estimate of 47.3 +/- 2.2 microT which is fairly consistent with the in situ geomagnetic field of 46.4 microT at the time of the reconstruction. The reconstruction was conducted to reproduce an excavated kiln of the seventh century in Japan and potteries of contemporary style (Sue ware) were also fired (Nakajima et al., 1974). We have been performing archeointensity determinations on the potteries using the Tsunakawa-Shaw (LTD-DHT Shaw) method.

We cut mini specimens from a cup type (CupB-1) and a sake-pitcher type (Tokkuri-1) potteries. For the CupB-1 all the specimens were heated in vacuum for acquisition of laboratory thermoremanent magnetization (TRM), and 15 out of the 17 specimens passed the criteria to yield an archeointensity estimate of 65.8 +/- 2.5 microT. This is significantly higher than the in situ geomagnetic field of 46.4 microT (about 40 per cent high). Anisotropy of remanent magnetization is not seemed to be a possible cause of the high archeointensity estimate because it is only 3 per cent between the natural remanent magnetization (NRM) directions and laboratory TRM directions based on measurements of anhysteretic remanent magnetization (ARM). We reported these preliminary results from the CupB-1 in last November (Yamamoto et al., 2016 SGEPPS meeting).

Other possible cause of the high archeointensity estimate is uncorrectable laboratory alteration using ARMs. It is expected that different type of alterations could occur between heating in vacuum and air. For the Tokkuri-1 the specimens were split into two groups: one was heated in vacuum while the other was in air. So far we have obtained 6 successful results: 67.1 +/- 12.5 microT for the vacuum group (N=2) and 49.1 +/- 2.6 microT for the air group (N=2). We will continue the experiment and discuss these results.
Pseudo single domain magnetite as a stable natural remanent magnetization carrier in obsidian

*Ioan Lascu¹, Matthew Ball¹, Joshua Einsle¹, Richard Harrison¹

1. University of Cambridge

Most natural samples contain so-called “non-ideal” paleomagnetic recorders, which are magnetic particles larger than ideal, single domain recorders, but smaller than proper multi domain grains, which are poor paleomagnetic recorders. The grain size range for these recorders, which for magnetite comprises grains from ~100 nm to a few μm in size, is known as the pseudo single domain (PSD) domain state. Natural samples containing abundant PSD grains have been shown to reliably record thermomagnetic remanent magnetizations that are stable over billions of years. Here we investigate obsidian varieties from Glass Butte, Oregon, USA, which present the opportunity to study the simple case of PSD grains encapsulated in volcanic glass. To do this, we combine paleointensity experiments, rock magnetism, scanning electron microscopy (SEM) nanotomography, and finite-element micromagnetic modelling. Results from the Thellier-IZZI protocol indicate that PSD grains acquire a thermoremanent magnetization efficiently and have high blocking temperatures, similar to stable single domain grains. Using rock magnetism we identify PSD signatures via their diagnostic fingerprint in first-order reversal curve (FORC) diagrams. Tomographic reconstructions obtained by stacking SEM images acquired via sequential milling through sample volumes of a few tens of cubic μm reveal the presence of abundant grains that span the PSD grain size interval. These grains have a variety of shapes, from simple ellipsoidal particles, to more complex morphologies attained via the coalescence of neighbouring grains during crystallization, to intricate “rolling snowball” morphologies that formed during growth in a dynamic environment as the flowing lava cooled. Micromagnetic modelling of the simplest morphologies reveals that these grains are in single vortex states, with the remanence controlled by irregularities in grain morphology. Larger grains contain complex, multi-vortex structures and incipient domain walls, with remanence being controlled by the collection of PSD states from areas with pronounced shape anisotropy. Modelling the properties of these grains as a function of field and temperature allows a better understanding of PSD remanence acquisition in natural samples.
Environmental Magnetism of Cave Deposits

*Joshua M Feinberg¹, Mark D. Bourne¹, Ioan Lascu²,¹, Becky E. Strauss³,¹, Zongmin Zhu¹,⁴, Plinio Jaqueto⁵

1. Institute for Rock Magnetism, University of Minnesota, 2. Department of Earth Sciences, University of Cambridge, 3. Department of Earth and Planetary Sciences, Rutgers University, 4. State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 5. Department of Geophysics, University of São Paulo

Caves are deep time archives of environmental conditions at the surface. Traditional paleoclimate proxies, such as oxygen and carbon isotopic ratios, are preserved within actively growing carbonate speleothems and can be constrained in time using high-resolution 230Th geochronology. While these isotopic speleothem proxies have revolutionized paleoclimate studies, here we discuss the use of magnetic measurements to constrain changes in the flux of Fe-bearing minerals (their composition, concentration, and magnetic grain size distribution) within the context of environmental change.

Fe-bearing minerals can occur within speleothems due to a variety of transportation and nucleation & growth mechanisms. Drip waters carry trace concentrations of Fe-bearing minerals from overlying soils and dissolved and eroded bedrock. Flood waters that temporarily fill a cave passage will leave behind thin films of silt- and clay-sized sediment, some of which contain Fe-bearing minerals. Some minerals, such as goethite, are thought to nucleate and grow in pore spaces in the overlying rock and to be deposited via dripwater onto actively growing stalagmites. Alternatively, changes in the Eh and pH conditions of groundwater as it equilibrates with the open air environment of a cave may cause dissolved Fe to nucleate and grow goethite directly on the surface of carbonate speleothems. Thus, while the incorporation of Fe-bearing minerals into speleothems is primarily a function of surface environmental conditions, including precipitation patterns, mean annual temperature, and pedogenic productivity, secondary processes within a cave environment can also contribute to Fe-minerals in speleothems.

Here we present some promising examples of how the magnetic properties of Fe-bearing minerals preserved within speleothems can provide environmental information on short (e.g., decadal) and long (e.g., millennial) timescales that is independent and complementary to existing paleo-environmental proxies.

Keywords: Caves, Speleothem, Paleoclimate, Soil, Environmental magnetism, Magnetic properties
Paleomagnetic secular variation and environmental magnetic records for the last 600 years from Lake Petexbatun sediments in Maya lowlands

Natsuki Yamaguchi¹, *Akira Hayashida¹ ², "Comparative Studies on Ancient American Civilizations" project members

1. Graduate School of Science and Engineering, Doshisha University, 2. Department of Environmental Systems Science, Doshisha University

Laguna Petexbatun is located in Maya lowlands where the Mesoamerican civilization developed prior to the 16 Century. As a part of the research project titled “Comparative Studies on Ancient American Civilizations,” several core samples were recovered for paleoenvironmental analysis mainly from a depression of about 40 m deep in the lake bottom. The sediments in the depression consist of grey mud with relatively thick annual varves, which are utilized for core-to-core correlation and construction of a composite depth scale of about 7.5 m long. AMS radiocarbon dates of fossil leaf fragments and varve counting indicate that the composite section covers the time period for the last 600 years. We made magnetic measurement of LL-channel samples from two long piston cores and additional short cores containing surficial sediments in order to investigate paleomagnetic secular variation (PSV) records and variations of magnetic properties reflecting environmental changes. Characteristic components of remanent magnetization obtained through principal component analysis of stepwise AF demagnetization show gradual increase of inclination values from about A.D. 1600 to the present. This variation is concordant with the global PSV models such as gufm1 and pfm9k.1a, and with the IGRF12 in the topmost part. Magnetic concentration parameters, including low-field magnetic susceptibility, anhysteretic magnetization, isothermal remanent magnetization (IRM) at 1 T, and high coercivity (0.3-1.0 T) component of IRM (HIRM), show consistent variation among the cores, suggesting decadal to centennial changes of magnetic mineral flux into the lake bottom. Particularly, the variations of IRM at 1T and HIRM can be well correlated to the yearly mean and monthly smoothed sunspot number record since A.D. 1700 characterized by 11-year and 88-year cycles. Thus magnetic properties of the Lake Petexbatun sediments provide geological evidence that the Mesoamerican climate has been modulated by the solar activity.

Keywords: magnetic properties, varve, sunspot
A relative paleointensity record of the last 3.2 m.y. from western equatorial Pacific and remanent magnetization lock-in depth

Yukihiro SAKURAMOTO\(^1\), Toshitsugu Yamazaki\(^1\), Yosuke Miyairi\(^1\), Katsunori Kimoto\(^2\), Yusuke Yokoyama\(^1\)

\(^1\)Atmosphere and Ocean Research Institute, The University of Tokyo, \(^2\)Japan Agency for Marine-Earth Science and Technology

We conducted a paleomagnetic study on a sediment core (MR14-02 PC01) taken from the western equatorial Pacific. The aim of this study was firstly to obtain a relative paleointensity (RPI) record older than 2 Ma; the number of available RPI records older than 2 Ma was still limited, and a global stacked curve has not yet been established. Another aim was to examine the controversial lock-in depth of remanent magnetization acquisition by comparing RPI and \(^{10}\)Be abundance profiles during polarity transitions.

Core PC01 covers the last ~3.2 m.y. with an average sedimentation rate of 5 m/m.y. Magnetic properties of the sediments satisfy the criteria for reliable RPI estimations, and a RPI record from ~0.6 to ~3.2 Ma was obtained by normalizing NRM intensities with SIRM. A reliable age model based on the oxygen-isotope (\(\delta^{18}\)O) stratigraphy was established for sediments older than 1.8 Ma. The RPI record up to 2 Ma from core PC01 agrees in general with the paleointensity stacks PISO-1500 and Sint-2000. However, long-term trends of the RPI record show anti-correlation with the ratio of ARM to SIRM, as pointed out for other cores by Yamazaki et al. (2013). This suggests that changes in the ratio of biogenic to terrigenous magnetic mineral component in the sediments may have contaminated the RPI record.

RPI and \(^{10}\)Be flux of core PC01 did not show any obvious offset around the onset of the Olduvai subchron and the Gauss-Matuyama transition. This implies a negligibly small lock-in depth for core PC01. We also examined the lock-in depth of core PC01 by comparing \(\delta^{18}\)O based ages of recorded polarity boundaries and GPTS ages, and by comparisons of RPI records among PC01, nearby MD982187 core (Yamazaki and Oda, 2005), and IODP Site U1314 in the North Atlantic (Ohno et al., 2012), which have different sedimentation rates. The results were consistent with the negligibly small lock-in depth of core PC01. A lock-in depth of ~0 cm was also reported from Indian Ocean sediments by Valet et al. (2014). It was revealed that lock-in depths obtained from sediment cores in the same region by the identical method are different: ~15 cm for MD982187 core (Suganuma et al., 2010; 2011), ~6 cm and ~10 cm for two cores of Horiuchi et al. (2016), and ~0 cm in this study. Lock-in depth may be controlled by small differences in lithology and depositional processes of individual cores through mechanisms that we do not yet understand.

Keywords: paleointensity, Beryllium isotope, DRM lock-in depth
Paleomagnetic and paleoclimatic records through the Matuyama-Brunhes boundary from the Chiba composite section, southeastern Japan

*Yusuke Suganuma*¹,², Masaaki Okuda⁴, Makoto Okada³, Yuki Haneda³

1. National institute of Polar Research, 2. SOKENDAI, 3. Ibaraki University, 4. Natural History Museum and Institute, Chiba

The Marine Isotope Stage (MIS) 19 is thought to be an important analogue for evaluating the climate system of the present interglacial (MIS 1), because of the similarity of the Earth’s orbital configuration, especially the phasing of obliquity maximum to precession minimum. During the MIS 19, the youngest geomagnetic polarity reversal, the Matuyama-Brunhes (M-B) boundary, has been recognized at the later part of the interglacial period in marine/lake sediments and Antarctic ice core (e.g., Dreyfus et al., 2008; Channell et al., 2010; Simon et al., 2017). Recently, the influence of geomagnetic field intensity to the climate was reported based on anomalous cooling events observed during the M-B boundary and the other reversal from pollen records from Osaka Bay (e.g., Kitaba et al., 2013; 2017). During the M-B boundary, the cooling event, coincides with the middle part of the paleomagnetic intensity low, just before the sea-level highstand correlated with the MIS 19c, followed by a rapid warming and concurrent paleointensity recovery. In order to address this topic, we carried out a very detailed pollen analysis from the most expanded marine sedimentary record through the MIS 19 in the Choba composite section, southeastern part of Japan. A newly obtained high-resolution oxygen isotope stratigraphy provides robust time control for the studied section. In this record, however, no significant palynological changes were observed across the horizon of the M–B transition interval. This indicates that a climatic change related with the geomagnetic field reversal was not obvious in the southeastern part of Japan.
A paleomagnetic record across the Mammoth reversed subchron reconstructed from the upper Pliocene Anno Formation, Awa Group, central Japan

*Yuki Haneda¹, Makoto Okada²

¹Graduate School of Science and Engineering, Ibaraki University, ²Department of Earth Sciences, Faculty of Science, Ibaraki University

The Awa Group, distributed in the central Boso Peninsula, central Japan, is a suit of marine succession for contiguous paleomagnetic studies, because of its strong magnetization and abundant marine microfossils used for age constraints. In this study, we obtained a successive paleomagnetic record across the Mammoth reversed subchron from the upper Pliocene Anno Formation, Awa Group. Rock samples for paleomagnetic and foraminiferal oxygen isotopic analyses were collected from the Shikoma River, Terao and Nagasaki sections in Futtsu city, Chiba. Mini cores with 1-inch diameter and hand-picked specimens with about 300 g by dry-weight were collected at 80 horizons at every 0.5-1.0 m stratigraphic interval.

We performed progressive alternating field demagnetization (pAFD), progressive thermal demagnetization (pThD) and various rockmagnetic analyses to extract primary components from the specimens and verify the stability of the remanence. The results for rockmagnetic analyses exhibit the most specimens have pseudo-single domain magnetites as the magnetic carrier of natural remanent magnetizations. We carried out the reversal tests, one of the field tests, and the data from both demagnetization methods are passed. Therefore, we calculated the Virtual Geomagnetic Polarity (VGP) by using the ChRMs from pThD, which exhibit a better result in the reversal test than pAFD.

The VGP path during ca. 3.35–3.19 Ma, including the Mammoth reversed subchron, was reconstructed. The VGPs across the upper and lower Mammoth boundaries are through the northeastern Africa and the southern Pacific off Chile, respectively. These VGP paths across the upper and lower Mammoth boundaries are similar to those from a sedimentary section in Sicily (Linssen, 1991) and from the Wai’anae volcano in Oahu (Herrero-Bervera et al., 1999; Herrero-Bervera and Valet, 2005).

References

Keywords: Mammoth reversed subchron, Virtual Geomagnetic Polarity, Oxygen isotopic stratigraphy, Paleomagnetism
The strongest crustal magnetic field generated by back-arc basaltic volcano in the Okinawa Trough

*Masakazu Fujii\textsuperscript{1}, Kyoko Okino\textsuperscript{2}, Hiroshi Sato\textsuperscript{3}\textsuperscript{1,2,3} National Institute of Polar Research and SOKENDAI, 2. AORI, UTokyo, 3. Senshu Univ.

Magnetic minerals in the upper lithosphere generate magnetic fields when the minerals are in a cooler environment than their individual Curie temperatures. These magnetic fields have been utilized for studying crust and mantle dynamics such as most widely known example of seafloor spreading through the recognition of magnetization stripes on the ocean floor (e.g., Vine and Matthews, 1963). In addition, the application to detect volcanic edifices and hydrothermal alteration zones has been recently developed by using underwater vehicles, which enable to acquire near-seafloor magnetic anomaly (e.g., Fujii et al., 2015; 2016). In 2014, we got a new discover of strongly magnetized basaltic volcanoes, known as the Irabu knolls, formed in the back-arc rift of the Okinawa Trough. Magnetic anomalies obtained by the ship and autonomous underwater vehicle around the Irabu knolls shows variation amplitude of 760 nT at sea-surface (summit water depth of 1630 m) and >10,000 nT at an average altitude of 100 m. Inverted magnetization intensity assuming 1-km magnetized layer shows \( \approx 18 \text{ A/m} \) from sea-surface anomaly and \( \approx 60 \text{ A/m} \) from near-seafloor anomaly. These values are considerably large compared with that of mid-ocean ridges (MORs), which are typically several A/m or less even on younger seafloors (Dyment et al., 2015). These results imply that the Irabu knolls generate the strongest crustal magnetic field in the Earth. However, the cause of this extremely high magnetization intensity is still unknown.

In order to determine the source of these strong magnetic anomalies, we conducted rock magnetic and petrological studies of collected samples in the Irabu knolls. Fourteen seafloor extrusive rocks including basalt, basaltic andesite, and andesite were obtained by the underwater vehicle Hyper Dolphin during YK00-06_leg2 NT11-20, and KY14-02 cruises. To characterize in rock magnetic properties and petrological signatures, we made a comprehensive data set of rock magnetic properties including natural remanent magnetization (NRM) intensity, magnetic susceptibility, grain density, coercivity, magnetic domain state (equivalent to magnetic grain size), Curie temperature (\( T_Q \)), Ti content (\( \chi \)) of titanomagnetite grain (\( \text{Fe}_{3-x}\text{Ti}_x\text{O}_4 \)), titanomagnetite content (\( m \)), and mineral texture.

All samples contain titanomagnetite as main magnetic carrier and have not been affected by low-temperature oxidation (maghemitization). One sample shows the highest NRM value of 214 A/m. This sample shows single higher \( T_Q = 460^\circ \text{C} \) and lower \( \chi = 0.19 \) compared with MOR basalts, and indicates a magnetic domain state of complete single-domain (SD) with \( m = 0.8 \text{ wt.\%} \). The other samples with complete SD also show relatively high NRM of 38–116 A/m and similar \( m = 0.7–1.1 \text{ wt.\%} \). In contrast, samples with pseudo-single-domain (PSD) or multi-domain (MD) show small NRM intensities of 7–10 A/m but larger \( m = 2.5–3.2 \text{ wt.\%} \). Low NRM intensity of 8 A/m was also observed for one sample with the contributions of superparamagnetic (SP) grains. This sample shows \( m = 0.2 \text{ wt.\%} \), which is small compared with that in other samples with SD and MD grains, suggesting that crystal growth of titanomagnetite is insufficient due to the rapid cooling rate or reduction of pressure. These results demonstrate that the contribution of SD grains rather than abundant MD grains is clearly important for acquisition of strong NRM, and that rapid crystal growth inhibits the creation of titanomagnetite and enables the formation of SP rather than SD grains. Proper crystal growth rate forming a lot of SD grains is
important for the acquisition of high NRM values. To conclude, we propose that the high magnetization of the Irabu knolls reflects accumulation of non-oxidized (fresh) low-Ti lava flows containing abundant SD-titanomagnetite grains, formed under proper crystal growth rates.

[References]

キーワード：海底火山活動、背弧リフト、磁気異常、岩石磁気、沖縄トラフ
Keywords: Submarine volcanism, Back-arc rift, Magnetic anomaly, Rock magnetism, Okinawa Trough
Quantification of the effect of inhomogeneous magnetization or irregularity in shape on the measurement of remanent magnetization

*小玉一人*
*Kazuto KODAMA*

1. 高知大学海洋コア総合研究センター
1. Center for Advanced Marine Core Research

Quantitative assessments of the effect of inhomogeneous magnetization and/or irregularity in shape on the measurement of remanent magnetization were made experimentally and theoretically. Experiments were performed on artificial and natural samples, using a novel type of high-sensitivity spinner magnetometer. The spinner has a wide dynamic range from $10^{-10}$ to $10^{-4}$ Am$^2$ and a resolution of $10^{-11}$ Am$^2$, incorporating two unique functions: a mechanism for adjusting flexibly the spacing between the sensor and the spinning axis, and a capability of measuring not only the fundamental component (5 Hz) but also the second (10 Hz) and the third (15 Hz) harmonic components. The former enabled the measurement of samples in any shape sized 10–50 mm, and the latter allowed the measurement of waveforms containing the harmonics leading to the analyses of their FFT spectrum. Numerical simulations using finite element method (FEM) were performed for assessing the effect of shape irregularity on the measured remanent magnetization. The effect of the heterogeneous magnetization was evaluated using a small dipole-simulating coil and a mini-core specimen of volcanic rock, and measured their magnetization by repositioning at different distances off the spinning axis. The effect of the offset was assessed in terms of the amplitude of the fundamental wave and the harmonics versus the amount of the offset. The measured amplitudes, without exception, increased with the amount of the offset, and their relationship was well approximated by a polynomial curve consisting of the second- to forth-order terms. This suggests that the contribution from the higher-order harmonic components could be represented in the form of a non-linear function of the offset distance. Measurements by a conventional spinner also demonstrated a similar increasing curve, but in association with a smaller increase rate and relatively large errors. The smaller increase rate is most likely due to its high-order low-pass filter and the large sensor distance for isolating only the fundamental wave component. However, the systematic increase with the offset, regardless of the type of spinner used, is contrary to the expectation that, given the same sample with the same magnetic moment, the magnetization measured for the offset and non-offset samples will be identical. This finding suggests that the intensity of magnetization measured with a spinner may include a systematic bias, particularly when samples contain a large amount of harmonic component that can be represented by an offset dipole. Theoretical analyses based on multipole expansion have revealed that the systematic relationship between the amplitude and the offset can be explained in terms of the dipole and higher-order multipole and their varying contributions dependent of the amount of offset. The FEM calculations were made for evaluating the effect of shape irregularity on the measured magnetization. The results were consistent with the experimental data from samples with the same properties as used in the model calculations.

キーワード: 不均質磁化、双極子モーメント、スピナー磁力計、多重極展開、高調波成分
Keywords: inhomogeneous magnetization, dipole moment, spinner magnetometer, multipole expansion, harmonic component
New measurement protocols for hysteresis reversal curves and identification of magnetic mineral components

*Andrew P Roberts¹, Xiang Zhao¹, David Heslop¹

1. Australian National University

High-resolution first-order reversal curve (FORC) diagrams are being used increasingly in rock and environmental magnetism, including for detection of biomagnetic signals in sediments. Resolution can be a major barrier to obtaining high-quality FORC diagrams and time-consuming measurements that employ small field steps are necessary to resolve the finest features of a FORC distribution. We have developed a new experimental protocol with irregularly spaced field steps that allows different parts of a FORC diagram to be measured at different resolutions. Larger numbers of measurements can, therefore, be made in key regions of a FORC distribution to resolve diagnostic features at higher resolution. Specification of the field steps in the irregular grid is based on measurement of a major hysteresis loop; no a priori knowledge concerning the underlying FORC distribution is required. FORC diagrams obtained with conventional measurements and with our new measurement protocol give consistent results. We have also extended the applicability of FORC-type diagrams through use of a series of hysteresis measurements that provide information about remanent, induced, transient, and transient-free magnetization components. These measurements, and differences between measurement types, enable production of 6 FORC-like diagrams with only double the number of measurements needed for a conventional FORC measurement. These diagrams enable discrimination between magnetic signatures associated with each domain state. When analyzing samples with complex magnetic mineral mixtures, contrasting domain state signatures are mixed in a traditional FORC diagram, but these signatures can be identified individually with the 6 diagrams discussed here. The ability to make different FORC measurements and to identify separately each magnetic component in a conventional FORC diagram by investigating different magnetization types can provide much-improved understanding of the information provided by FORC diagrams. The diagnostic information provided by these additional FORC-type diagrams should assist substantially in magnetic unmixing of complex samples and in quantitative mineral magnetic interpretation.

Keywords: Geomagnetism, Paleomagnetism, Rockmagnetism
Revealing the role of microbial activity in the acquisition of NRM in aquatic sediments -- Insights from redeposition experiments

*Xiangyu Zhao\(^3,1\), Ramon Egli\(^2\), Stuart Gilder\(^3\), Sebastian Müller\(^3\)

1. NIPR, 2. ZAMG, 3. LMU

Sedimentary rocks and sediments preserve continuous records for reconstructions of geological events. Magnetic records are among the most concerned sedimentary records across disciplines due to their application in synchronizing cores. In particular, the natural remanent magnetization (NRM) is of great interest as the derived relative paleointensity (RPI) reconstruction can provide high-resolution geochronological frameworks on a global scale. Despite the extensive application for decades, however, the underlying mechanisms of how paleomagnetic records are acquired and preserved in sediments are only partially understood. Moreover, with the biogenic magnetite, known as magnetofossils, being widely identified in sediments, questions about their effects on RPI reconstructions are posed given their unique properties with respect to the detrital magnetic components. With these questions in mind, we designed redeposition experiments to investigate how magnetofossils acquire remanent magnetization in fresh sediments. The dominant magnetic component of the sediments is single domain magnetite, presumably magnetofossils, accounting for \(87\%\) of the magnetization in these sediments. The redeposition experiments were performed with such sediments in their original form whereby the living microorganisms (mainly non-magnetic bacteria) are preserved. We documented two major novel features of the acquisition behaviors in our experiments. First, the acquisition of these sediment particles after deposition is more effective than previously estimated. Second, the acquired remanent magnetization is unstable in a zero field. We discover that these features are associated with the microbial activities, and can be well explained by a bioturbation-driven acquisition model. It suggests that bioturbation plays an appreciable role in modulating the paleomagnetic records in sediments. This finding has a strong implication for improving RPI reconstructions in future.

Keywords: Natural remanent magnetization, sediment, bioturbation
Superparamagnetic magnetoferritin nanoparticles: syntheses, characterization and applications

*Yongxin Pan\textsuperscript{1,2}, Changqian Cao\textsuperscript{1}, Yao Cai\textsuperscript{1}, Tongwei Zhang\textsuperscript{1}, Caiyun Yang\textsuperscript{1,2}, Huangtao Xu\textsuperscript{1,2}

1. Paleomagnetism and Geochronology Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences, 2. College of Earth Sciences, University of Chinese Academy of Sciences, Beijing

Ferritin is a widely existing iron-storage protein in many living organisms throughout animals, plants and bacteria. It is a cage-like protein with an external diameter of 12 nm and an inner diameter of 8 nm. The structure of mature mammalian ferritin consists of a 24-subunit protein, composed of heavy-subunits (H) and light-subunits (L). Within the ferritin protein cavity, there is a very weak magnetic hydrous ferric oxyhydroxide (ferrihydrite) mineral core. In the past few decades, great progresses have been made in synthesis of various strongly ferrimagnetic nanoparticles using ferritin proteins (e.g., Meldrum et al. 1992; Douglas et al. 1995; Kramer et al. 2004; Mann et al. 1993; Mann and Meldrum 1991; Yamashita et al. 2004). Importantly, through advancements in genetic engineering, the recombinant human H-chain ferritin (HFn) was developed and used to synthesize mono-dispersed, non-interacting ferrimagnetic magnetoferritin (M-HFn) nanoparticles. These biomimetic synthesized ferrimagnetic magnetoferritins have stoichiometric magnetite cores with nearly sphere in shape, extremely narrow size distribution, high crystallinity, and are superparamagnetic at ambient temperature (e.g., Uchida et al. 2006; Cao et al. 2010; Walls et al. 2013). Recently, we have well demonstrated that the M-HFn nanoparticles can be directly used to visualize diverse tumor tissues and in vivo imaging of microscopic tumors, due to their dual functionality of active tumor-targeting ability and inherited peroxidase-like activity (Fan et al. 2012; Cao et al. 2014; Cai et al. 2015). In this paper, we will present new results of syntheses, characterization, and biomedical applications of the M-HFn nanoparticles. It has been found that the magnetic properties, relaxivity and peroxidase-like activity of M-HFn nanoparticles are size dependent. Moreover, the cobalt-doped M-HFn nanoparticles (M-HFn-CoxFe\textsubscript{3-x}O\textsubscript{4}) can enhance the peroxidase activity and tumor tissue visualization.

Keywords: Superparamagnetism, Magnetoferritins, Synthesis
A Magnetite-Based Biophysical Hypothesis for the Radiowave Detector in Migrating and Homing Animals: Magnetoacoustic Transduction

*Joseph Kirschvink*¹², Atsuko Kobayashi², Jennifer Buz¹

1. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA, 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan

Two major biophysical theories have been proposed to explain how migrating and homing animals could make use of the geomagnetic field, including the presence of specialized receptor cells containing crystals of biologically-precipitated magnetite (1), or quantum-mechanical effects on electron spins in the photo-active pigment, cryptochrome (2). Evidence exists for both theories: Nearly 20 studies have shown that many animals change their behavior when subjected to a short magnetic impulse that exceeds the coercivity of biologically precipitated magnetite crystals, and proponents of the quantum compass idea argue that the disruption of magnetic behavior by radio frequency (Rf) waves in the mid-wave band (.1-5 MHz) can be explained by interference with the hyperfine transitions between singlet and triplet quantum states.

Two separate and unrelated studies now lead us to propose that biological magnetite might also be able to account for the radio wave effects, without the need for a cryptochrome sensor. First, Kellnberger et al. (3) demonstrated that energy absorbed in single-domain magnetite nanocrystals by the oscillating magnetic field vector in an incipient radio wave is converted to ultrasound at the second harmonic of the driving frequency (e.g., a 0.5 MHz signal produces ultrasound at 1 MHz); this ‘magnetoacoustic’ effect works, and they were able to measure ultrasound at double the Rf frequency in aqueous solutions containing SD nanophase magnetite when exposed to weak Rf radiation. Second and quite independently, Kubanek et al. (4) discovered a class of trans-membrane ion channels that were activated by ultrasound in this same frequency band. If those ion channels were expressed in the lipid-bilayer membranes surrounding magnetosomes, they could constitute the biological radio-wave receptor (5). Using scanning SQUID microscopy of bovine muscle tissue (‘wagu beef’), we have recently shown the common presence of common ferromagnetic clusters at ppb to ppm levels, with rock magnetic properties consistent with biological magnetite; some of these, if present in sensory cells, might be the radio wave detectors.


Keywords: Single-Domain biogenic magnetite, Magnetoacoustic effect, magnetic field sensitivity in animals
Paleomagnetic age dating of the Caravia-Berbes fluorite deposits of Asturias, Spain.

*Kazuo Kawasaki¹, David T.A. Symons², Fernando Tornos³, Francisco Velasco⁴, Idoia Rosales⁵

1. Graduate School of Science and Engineering for Research, University of Toyama, 2. Department of Earth & Environmental Sciences, University of Windsor, Canada, 3. Centro de Astrobiología, CSIC-INTA, Spain, 4. Department de Mineralogía y Petrología, Universidad del País Vasco, Spain, 5. Instituto Geológico y Minero de España, Spain

Paleomagnetic results are reported for the Caravia-Berbes fluorite deposits of Asturias, Spain. The Caravia-Berbes district is a major fluorite producing area in Europe where the fluorite occurs as either mantos or veins. Paleomagnetic analyses of 191 specimens collected from the Emilio manto and the Caliza de Montaña Formation near the Mina Ana vein lode were done using alternating field and thermal step demagnetization methods. A stable characteristic remanent magnetization (ChRM) isolated in the specimens from Emilio manto yields a paleoinclination that gives an age of ~206 Ma after correction for Neogene Pyrenean tilt. This age indicates a major hydrothermal and ore emplacement event that is coeval with the onset of Pangea's breakup. Another stable ChRM in a silicified dolomitic alteration zone of the Caliza de Montaña Formation yields a paleopole positon at ~115 Ma after Neogene tilt correction, indicating that the western Cantabrian basin was also impacted by a major hydrothermal alteration and remagnetization event during the Aptian-Albian ~35° counterclockwise rotation of Iberia away from the Eurasian plate. Our results show that the Mesozoic strata has experienced at least two major hydrothermal events.

キーワード：古地磁気学、再帯磁、蛍石鉱床

Keywords: Paleomagnetism, Remagnetization, Fluorite mineralization
Remagnetization during vertical axis rotation. A Carboniferous tale from the Iberian peninsula.

*Daniel Pastor-Galán*

1. Center for North East Asian Studies, Tohoku University

The Variscan mountain belt in Iberia defines a large “S” shape with the Cantabrian Orocline in the north and the Central Iberian curve, an alleged orocline belt of opposite curvature, to the south. The Cantabrian Orocline is kinematically well constrained, but the geometry and kinematics of the Central Iberian curve are still controversial. I have performed extensive paleomagnetic studies to investigate the kinematics of the Central Iberian curve, which plays an important role in the amalgamation of Pangea since it may have accommodated much of the post-collisional deformation.

We have performed a paleomagnetic study on Carboniferous granitoids and Cambrian and carboniferous limestones within the hinge of the curve. Paleomagnetic and rock magnetic results show a primary magnetization in Carboniferous granitoids and a widespread Carboniferous remagnetization in the sedimentary rocks studied.

Granitoids show ca. 70° counter-clockwise rotations consistent with the southern limb of the Cantabrian Orocline (the one to the north). Post-kinematic granitoids and Cambrian limestones show consistent inclinations but very scattered declinations suggesting that they were magnetized coevally to and after the ~ 70° rotation. Our results show no differential rotations between northern, southern limb and the hinge zone. Therefore, I discard a late Carboniferous oroclinal origin for the Central Iberian curve.
Rock magnetic signature of gas hydrate-bearing sediments: insights from the Kumano Basin, Nankai Trough, offshore Japan

*Myriam Annie Claire Kars\textsuperscript{1}, Kazuto KODAMA\textsuperscript{1}, Katie Taladay\textsuperscript{2}

1. Center for Advanced Marine Core Research, Kochi University, Japan, 2. University of Hawaii at Manoa, Geography, USA

Interest in gas hydrate occurrences have been increasing in the last decades because of their potential value as an energy resource. Signatures in the rock magnetic record has successfully been used to identify present gas hydrate-bearing horizons in marine sediments, and can potentially indicate former gas hydrate accumulation zones. Recent studies carried out at Integrated Ocean Drilling Program (IODP) Site C0008, in the frontal thrust of the Nankai Trough, have shown that authigenic ferrimagnetic iron sulfide-rich layers characterize present day gas hydrate horizons. Here we present a detailed rock magnetic study of gas hydrate-bearing sediments from the Kumano forearc basin in the Nankai Trough drilled during IODP Expedition 338. We aim to characterize the present distribution of gas hydrate-bearing horizons in the basin. Our data are from Site C0002 from 200 to 500 meters below sea floor (mbsf), which is cut by prominent, regional bottom simulating reflector (BSR) observed at \textasciitilde 400 mbsf in seismic data. Downhole evolutions of concentration, grain size and composition of the magnetic minerals are investigated by a series of rock magnetic measurements. The preliminary results support a characteristic rock magnetic signature related to gas hydrate and suggests the presence of gas hydrate beneath the BSR, i.e. below the base of gas hydrate stability. This deeper signature of hydrate occurrence correlates with the depth of a discontinuous, but widespread double-BSR in 3D seismic data.

Keywords: Nankai Trough, Gas hydrate, Rock magnetism
Monitoring of the 2011 Tohoku tsunami deposits by geochemical and rock magnetic analyses in Sendai bay sediments.

*Noriko Kawamura*¹, Naoto Ishikawa², Tetsu Kogiso²

¹Japan Coast Guard Academy, ²Graduate School of Human and Environmental Studies, Kyoto University

Near-shore marine sediments deposited along island arcs preserve evidence of past disaster events such as tsunamis. A tsunami occurred on 11 March 2011 off the Pacific coast of Tohoku, Japan, associated with the 2011 off the Pacific coast of Tohoku Earthquake. The event is likely preserved in marine sediments. This study aims to constrain the distribution of tsunami deposits and its preservation states in Sendai Bay, located west of the earthquake, by geochemical and rock magnetic analyses. Surface sediments on the seafloor were collected at four stations, the entrance (S-2) and outer sites (S-3, S-4, and S-5) in the Bay, between 2011 and 2014. Stations S-4 and S-5 are located under the axis of the storm wave base, which erode modern sediments (e.g., Saito, 1989). Results of low-temperature magnetometry indicate that transported magnetite by the tsunami is oxidized within a year at stations S-4 and S-5. Magnetic grain size parameters, Mr/Ms and Hcr/Hc, show that coarse grains are supplied at stations S-4 and S-5 in 2013-2014. Magnetic extracts observation with a scanning electron microscopy (SEM) and element identification by energy dispersive X-ray spectrometry (EDX) indicates that Ti-poor magnetite particles with less lamellae increase in the samples that collected after the 2011 Tohoku tsunami. Fe₂O₃ and Cr contents are high in the samples. While Cr content decreases from 2013 at all stations. Fe₂O₃ content also declines at station S-5 in 2014. It is implied that the 2011 Tohoku tsunami deposits are not preserved after 2013 at least.

Keywords: Tsunami deposit, Rock magnetism, Sendai Bay
Reconstruction of paleosecular variation from Lake Biwa sediments: Pass-through measurements and SQUID microscopy

*Hirokuni Oda¹, Yuhji Yamamoto², Yoshio Inouchi³

¹. Institute of Geology and Geoinformation, Geological Survey of Japan, AIST, 2. Kochi University, 3. Waseda University

We have conducted measurements on one of the three piston cores taken from Lake Biwa off Takashima (BWK12-2; length 1633 cm). Sediment comprises of clay intercalated with at least 13 ash layers. Thirteen horizons were dated with 

C using plant pieces giving a maximum age estimate of more than 40 ka. Paleomagnetic cube specimens, u-channel samples and LL-channel samples were taken from the core. Paleomagnetic cube specimens were measured with a SQUID Rock Magnetometer at AF demagnetization steps of 0-80 mT. Results of inclination from the cube samples show an agreement with the paleosecular variation reported by Ali et al. (1999). For example, Inclination show a minimum of ~40° at 2600 year BP and a maximum of ~58° at 3400 year BP, both of which can be correlated with a minimum 'h' at 2400 year BP and a maximum 'i' at 2900 year BP presented by Ali et al. (1999), respectively. Pass-through measurements on u-channel and LL-channel samples were conducted both at Geological Survey of Japan and Kochi Core Center. Paleomagnetic results after deconvolution for u-channel and LL-channel at two different laboratories with different sensor response functions will be compared together with the results of cube samples. Further, a preliminary results measured with a scanning SQUID microscope on some block samples taken from LL-channel samples are going to be presented.
We investigate instability of a toroidal basic field cofined in a rotating, finitely conducting and inviscid fluid sphere. In order to represent a system where the Lorentz-force term dominates in the vorticity equation like in the Earth's core, we use the magnetostrophic approximation by which the inertial term is exactly zero. The equation is linearized and represented in the azimuthal wavenumber (m) space. The remaining meridional space is discretized using the finite difference method. In this method, the grid points do not necessarily fall on the spherical surface (the core-mantle boundary), but the second-order accuracy can be kept by carefully implementing the boundary condition. The numerical method is verified by comparing the exact solution of the magnetic decay mode and our previous numerical code. The Arnoldi method and the inverse power method are used to solve the eigenvalue problem about the growth rate of the perturbed magnetic and velocity fields.

We generally assumed a basic toroidal field that is proportional to \(1 - s^2 - z^2\) \(s^k\) (k=1, 3, 5, ...) or \(1 - s^2 - z^2\) \(z s^{k-1}\) (k = 2, 4, 6, ...) where \((s, z)\) are the cylindrical coordinates. This basic field is exactly zero at the spherical surface and the position of the intensity maximum tends to approach the equator on the spherical surface as \(k\) increases. When the Elsasser number, the only dimensionless parameter representing the square of the basic field intensity, increases and exceeds a certain value, the system turns to be unstable and a slow magnetostrophic wave propagates eastward (prograde) or westward (retrograde). The critical Elsasser number is not significantly dependent on \(k\); the critical value is basically \(O(1)\) and is not greater than 10 when \(k\) is varied up to 10. The magnetic instability tends to occur at a higher wavenumber when \(k\) increases. For example, when \(k = 8\), the critical azimuthal wavenumber is around \(m = 6\). The growth rate tends to be higher at a higher wavenumber mode. The wave propagation is largely eastward and the phase velocity is not significantly different from the characteristic slow-wave speed. This study suggests that the geomagnetic westward drift seen at the low latitudes of the Earth's core surface is basically explained by a westward mean flow that is probably created by the thermal convection inside the core, but is partially modulated (slowed down) by the eastward wave propagation, if the instability of a strong toroidal field hidden below the core-mantle boundary is a significant process in the core dynamics.
Decadal-centennial scale features of the Matuyama-Brunhes magnetic reversal

*Masayuki Hyodo¹, Balazs Bradak¹, Makoto Okada², Shigehiro Katoh³, Ikuko Kitaba⁴

1. Research Center for Inland Seas, Kobe University, 2. Department of Earth Sciences, Ibaraki University, 3. Hyogo Museum of Nature and Human Activities, 4. Research Centre for Palaeoclimatology, Ritsumeikan University

The Matuyama-Brunhes magnetic reversal is the youngest and most investigated reversal on record, and this has greatly furthered our understanding of the geodynamo by providing detailed records of a highly dynamic change of the earth's magnetic field. Recent paleomagnetic observations in various localities reveal many centennial-scale changes during the reversal. However, we have never observed sub-centennial scale features. Here, we report a 10-yr resolution record of the Matuyama-Brunhes transition (MBT) from a marine sequence from the Chiba Section, central Japan. The record is based on paleomagnetism mainly carried by greigite and an astronomical age model. The transition spans about 9000 yr in total, consisting of two precursory events, the main transition, and rebound. There are two precursory events characterized by multiple polarity swings. The first event occurred in the earliest marine isotope stage (MIS) 19 and spans ca. 1100 yr; the second occurred just after highstand MIS 19.3 and spans ca. 100 yr. The main MBT spanning ca. 2000 yr has nine large directional swings in both inclination (> 50 deg.) and declination (> 100 deg.). The main MBT is postdated by three steep inclination events persisting for 40—70 yr within about 300 yr, regarded as rebounds. Besides these features, there is an interval characterized by large declination fluctuations persisting for about 1200 yr around highstand MIS 19.3. Some of these centennial scale features can be seen in previous high-resolution MBT records from other locations around the world.

キーワード: マツヤマ-ブリュンヌ極性トランジション、地磁気逆転、千葉セクション、堆積残留磁化、堆積化学残留磁化

Keywords: Matuyama-Brunhes polarity transition, Geomagnetic reversal, Chiba Section, depositional detrital remanent magnetization, depositional chemical remanent magnetization
A high resolution relative paleointensity record across the Matuyama-Brunhes polarity transition from the Chiba composite section, a candidate for the L-M Pleistocene boundary GSSP

*Makoto Okada¹, Yusuke Suganuma², Yuki Haneda³*

1. Department of Earth Sciences, Faculty of Science, Ibaraki University, 2. National Institute of Polar Research, 3. Graduate School of Science and Engineering, Ibaraki University

We report a high-resolution paleomagnetic direction and relative paleointensity records from a continuous marine succession exposed on the Chiba composite section of the Kokumoto Formation, Kazusa Group, Japan. The Chiba composite section is a candidate for the Lower-Middle Pleistocene boundary GSSP. Our records provide detailed behaviors of the virtual geomagnetic poles (VGP) and relative paleointensity changes during the Matuyama-Brunhes (M-B) polarity transition. The resultant relative paleointensity and VGP records show a significant paleointensity minimum near the M-B boundary, which is accompanied by a clear “polarity switch” like change in terms of the paleomagnetic direction. The relative paleointensity seems to keep in a low level for more than 10 thousand years associated with an unstable normal polarity. A high-resolution oxygen isotope chronology for the Chiba composite section indicates that the M-B boundary is located in the middle of Marine Isotope Stage (MIS) 19 and yields an age of 771.7 ka for the boundary. This age is consistent with those based on the latest astronomically tuned marine and ice core records and with the recalculated age of 770.9 ±7.3 ka deduced from the U-Pb zircon age of the Byk-E tephra. Moreover, our relative paleointensity record exhibits a consistent variation with other paleointensity records including Be10 derived intensity proxy from deep sea and ice cores. Our paleomagnetic data especially for the relative paleointensity represent one of the most detailed records on this geomagnetic field reversal so far obtained from marine sediments and will therefore be key for understanding the dynamics of the geomagnetic dynamo and for calibrating the geological time scale.

Keywords: relative paleointensity, geomagnetic reversal, Matuyama-Brunhes boundary, Chiba composite section
Investigation of a marine magnetic polarity reversal boundary in cross-section at the northern boundary of the Kane Megamullion, Mid-Atlantic Ridge 23°40’ N

*Min Xu¹, Maurice Tivey²,³, Wen Yan¹

¹. SCSIO, CAS, 2. WHOI, 3. NSF

Near-bottom magnetic field measurements made by the submersible *Nautilis* during the 1992 Kanaut Expedition define the cross-sectional geometry of magnetic polarity reversal boundaries and the vertical variation of crustal magnetization in lower oceanic crust exposed along the Kane Transform Fault (TF) at the northern boundary of the Kane Megamullion (KMM). The KMM exposes lower crust and upper mantle rocks on a low-angle normal fault that was active between 3.3 Ma and 2.1 Ma. The geometry of the polarity boundaries is estimated from an inversion of the submarine magnetic data for crustal magnetization. In general, the polarity boundaries dip away from the ridge axis along the Kane TF scarp, with a west-dipping angle of ~45° in the shallow (<1 km) crust and <20° in the deeper crust. The existence of the magnetic polarity boundaries (e.g. C2r.2r/C2An.1n, ~2.581 Ma) indicates that the lower crustal gabbros and upper mantle serpentinized peridotites are able to record a coherent magnetic signal. Our results support the conclusion of Williams [2007] that the lower crust cools through the Curie temperature of magnetite to become magnetic, with the polarity boundaries representing both frozen isotherms and isochrons. We also test the effects of the rotation of this isotherm structure and/or footwall rotation, and find that the magnetic polarity boundary geometry is not sensitive to these directional changes.

Keywords: Near-bottom magnetic, Kane Megamullion, Magnetic Reversal Boundary, isotherm and isochron
Paleomagnetic secular variation of 3–4 ka from lava flows around the post-caldera cones of Aso Volcano and its contribution to the volcanic stratigraphy

*Nobutatsu Mochizuki*¹, *Yasuo Miyabuchi*², *Hidetoshi Shibuya*³

¹. Priority Organization for Innovation and Excellence, Kumamoto University, ². Faculty of Education, Kumamoto University, ³. Department of Earth and Environmental Science, Kumamoto University

We have conducted a paleomagnetic study on Holocene lava flows around the post-caldera cones of Aso Volcano, central Kyusyu, Japan. On the basis of the paleomagnetic directions, combined with geological evidences, we have refined the stratigraphic relationship of the lava flows and the distribution of them. In the previous studies, lava flows distributed around a cone (volcanic center) were described as a single geological unit corresponding to each cone. Paleomagnetic directions obtained in this study are useful to recognize temporal correlation or distinction between the studied sites. It is also noted that the paleomagnetic directions obtained from 22 sites around three cones and a scoria cone are distributed on a simple curve, which is considered to record paleomagnetic secular variation (PSV) during the period between 4 and 3 ka. This PSV curve contributes to an improved volcanic stratigraphy including temporal gaps of the order of 10–100 years.

キーワード：古地磁気永年変化、火山層序、阿蘇火山

Keywords: paleomagnetic secular variation, volcanic stratigraphy, Aso Volcano
Archeomagnetic database of Japan: direction and intensity

*Tadahiro Hatakeyama, Hidetoshi Shibuya

1. Information Processing Center, Okayama University of Science, 2. Graduate School of Science and Technology, Kumamoto University

In Japan, there have been many paleomagnetic measurements on archaeological relics and ruins. The total number of the site of archeodirection in Japan seems several thousands, but the accurate number is not well known because of dissipation of the reports. We have been gathered the archeomagnetic data and constructed a new database including well-dated datasets. Now archeodirection data obtained from about 700 sites are reported on our website. Moreover there are more than one thousand data remaining in the stock which have unclear age and quality and we have a plan to review the data in detail and will be published. Here we introduce the classification, searching, reposition and publication of the data measured.

Keywords: paleomagnetism, archeomagnetism
The time-averaged palaeomagnetic field during 3-7 Ma at high northern latitudes

*Radchagrit Supakulopas1, Adrian Muxworthy1, Morten Riishuus2, Conall Mac Niocaill3, Arne Døssing4

1. Department of Earth Science and Engineering, Imperial College London, UK, 2. Institute of Earth Sciences, University of Iceland, Iceland, 3. Department of Earth Sciences, University of Oxford, UK, 4. National Space Institute, DTU Space, Denmark

The geocentric axial dipole (GAD) hypothesis states that when we average the geomagnetic field over sufficient time intervals, the time-averaged field (TAF) behaves like a dipole aligned along the Earth’s spin axis and positioned at the Earth’s centre. This hypothesis is crucial in palaeomagnetic research such as palaeosecular variation, palaeoclimate and plate tectonic reconstruction. However, the time interval to average the field to achieve a GAD is still debated. For example, there is some evidence for the persistence of long-term hemispheric asymmetry on time scales of \(10^5-10^6\) yr, particularly at high-latitudes. As most palaeomagnetic research is conducted under the GAD hypothesis, the hypothesis needs to be rigorously tested. In this research we aim to investigate the symmetry of the palaeomagnetic field and to test the GAD hypothesis during 3-7 Ma using full-vector palaeomagnetic data - including palaeodirection and palaeointensity - from dated lava piles in northern Iceland.

The demagnetisation measurements including alternating field (AF) and thermal were made to determine palaeomagnetic directions. In order to improve quality of high-latitude data, approximately 6-10 directional data per site were used to calculate mean directions. We found mean declination and inclination of 355.0° and 72.0° with 95% confidential limit of 2.2°. The modelling of the field was performed by adding 4% of quadrupole and 11% of octupole to the model; the model returns the inclination of 72.1° at 65°N. Our dataset passed the reversal test with Class A which is indicative of high accuracy. The directional data were converted to virtual geomagnetic pole (VGP) which is located at 81.3° N and 180.2°E.

The Curie temperature determination was performed using strong field thermomagnetic analysis prior to palaeointensity experiment. Evidence from strong field thermomagnetic curves indicates the presence of Ti-rich titanomagnetite, Fe-rich titanomagnetite and titanomaghemite in samples across the lava flows. Palaeointensity experiment was conducted in a helium atmosphere in order to prevent oxidation on the samples. We used the infield/zero-field and zero-field/infield protocol with partial thermoremanent magnetisation (pTRM) checks. Samples from 20 lava flows yield successful results. We found the mean intensity of 22.0±2.7 μT, which is lower than the intensity of the GAD field (55.9 μT) at 65°N, and the virtual dipole moment (VDM) of 32 ZAm². The investigation of palaeomagnetic data from Icelandic basalts reveals that the non-dipole field persists during 3-7 Ma at high-northern latitudes. However, the results of this study should be compared with the time-averaged field data at high-southern latitudes especially at 65°S to see the symmetry of the field during 3-7 Ma.

Keywords: Iceland, Geocentric Axial Dipole (GAD) hypothesis, Palaeomagnetism
Composition law of oblique anhysteretic remanent magnetization and its relation to the magnetostatic interaction

*Masahiko Sato¹, Nobutatsu Mochizuki², Minako Watanabe³, Hideo Tsunakawa⁴


The basic properties of oblique anhysteretic remanent magnetization (OARM) acquired in a weak and steady magnetic field with an arbitrary angle to the alternating field direction were studied. OARM and rock-magnetic experiments were conducted on samples of basalt, granite, and sediment containing non-interacting single-domain (SD), interacting SD, pseudo-single-domain, and multidomain low-Ti titanomagnetites. The intensity of OARM ($M_{OARM}$) systematically increased or decreased with increasing angle between alternating and steady field directions ($θ_{SF}$), while the angle between alternating field and OARM directions ($θ_{OARM}$) increased with increasing $θ_{SF}$ for all samples. During stepwise alternating field demagnetization, the OARM vector shows a single component parallel to the steady field direction for $θ_{SF}$ = 0° ($ARM_∥$) and 90° ($ARM_⊥$). The median destructive field of $ARM_⊥$ is larger than that of $ARM_∥$. For intermediate angles ($θ_{SF} = 30°, 45°, and 60°$), the OARM vector was not parallel to the applied steady field; instead, it gradually increased with coercivity. These experiments indicate that the OARM vector is approximately given by the sum of two orthogonal magnetizations coinciding with $ARM_∥$ and $ARM_⊥$, respectively. Thus, the OARM vector can be determined by acquisition efficiencies of $ARM_∥$ and $ARM_⊥$ in an individual sample. Based on these experiments and associated rock-magnetic measurements, non-interacting SD samples show lower $ARM_⊥/ARM_∥$ ratios, compared to other samples. This result suggests that OARM can be used as a conventional tool to detect non-interacting SD particles in the paleomagnetic samples.
Ocean waves-induced magnetic effects in Taiwan

*Chun-Rong Chen¹, Chieh-Hung Chen², Jing-Yi Lin¹, Horng-Yuan Yen¹, Peng Han⁴, Che-Chien Chao³

1. Department of Earth Sciences, National Central University, 2. Institute of Geophysics and Geomatics, China, University of Geosciences, 3. Department of Earth and Environmental Sciences, National Chung Cheng University, 4. The Institute of Statistical Mathematics, Tokyo

12 magnetic stations routinely monitor changes in the geomagnetic total intensity field are utilized in this study to examine magnetic ocean wave effects in Taiwan. The time-varied magnetic data are transferred into the frequency domain via the Fourier transform to investigate the frequency characteristics associated with ocean waves. Significant enhancements can be found from spectrums in the frequency band of about 0.05–0.3 Hz at stations located very close to the seashore. Frequency characteristics of magnetic data were compared with them of significant wave heights monitored using nearby meteorological observation buoys. The agreement in the frequency characteristics suggests that the magnetic field is affected by ocean waves directly hitting the seashore in open oceans. In contrast, ocean waves with the double-frequency recorded by the marine metrological buoys reveal the locally dominate wave-wave interaction around bays.

Keywords: Ocean waves, Magnetic disturbance, Microseisms