The utility of marine controlled-source EM in subduction zone applications: Imaging the Nicaragua megathrust plate interface

*Samer Naif¹, Kerry Key², Steve Constable², Rob L Evans³

1. Lamont Doherty Earth Observatory, 2. Scripps Institution of Oceanography, 3. Woods Hole Oceanographic Institution

Electrical resistivity soundings are ideally suited to map fluids and quantify porosity, and provide important independent constraints that are complimentary to seismic observations. As a result of recent technological advancements in instrumentation and numerical modeling, the controlled-source electromagnetic (CSEM) method is emerging as a reliable tool for imaging offshore tectonic margins. In 2010, we collected CSEM data along a 280 km profile spanning the incoming plate, trench, and forearc slope offshore of Nicaragua, the first large-scale survey at a subduction zone. The results highlight the utility of CSEM for imaging seafloor gas hydrates, fluid pathways along faults, and subducted sediments marking the plate interface. We used the porosity estimates from the resistivity observations to quantify the fluid budget in the incoming oceanic crust and the outer forearc. The data were highly sensitive to the channel of subducted sediments, allowing us to track the evolution of the fluid budget along the megathrust plate interface in the region that ruptured during the Mw 7.7 1992 tsunami earthquake.
Sensitivity analysis of high conductivity anomalies in the upper mantle beneath the Society hotspot

*Noriko Tada¹,³, Pascal Tarits², Kiyoshi Baba³, Hisashi Utada³, Daisuke Suetsugu¹

1. Japan Agency for Marine-Earth Science and Technology, 2. IUEM, 3. The University of Tokyo

We obtained a three-dimensional (3-D) electrical conductivity image of the upper mantle around the Society hotspot in French Polynesia, and we have found four high electrical conductivity anomalies in the upper mantle. One of them has already been introduced in Tada et al. (2016), which is a distinct high electrical conductivity anomaly and may be continued from the transition zone up to at a depth of approximately 50 km below the sea level. Although the other conductive structures have not been mentioned in Tada et al. (2016), they are also distinct features. Besides, collaborating with results from seismic tomography (Isse et al., 2016; Obayashi et al., 2016), it is crucial to check sensitivity and validity of each anomaly. So, in this presentation, we will present detail procedures for obtaining the 3-D electrical conductivity structure and discuss what we really constrain in the 3-D structure.

Keywords: 3D inversion, marine magnetotelluric method, electrical conductivity structure, mantle plume, Society hotspot
Noise reduction of horizontal components of magnetic field by means of Independent Component Analysis and its application to the Magnetotelluric survey in Boso peninsula

We carried out a MT survey in the Boso peninsula (Chiba, Central Japan) to investigate the resistivity structure of the area where the slow slip events have occurred at least five times within 20 years. Large artificial noise contaminated in the MT data and the resistivity and phase showed near field effect at the frequency band below 1Hz. To avoid the local noise, we attempted to apply the independent component analysis (ICA).

ICA is one of the multivariate analysis methods and in which complicated data sets can be separated into all underlying sources without knowing these sources or the way that they are mixed. It assumes that the mixing is liner, and yields the relation \(x(t) = As(t) \), where input signals \(x(t) \), mixing matrix \(A \) and source signal \(s(t) \). The matrix \(W(=A^{-1}) \) is computed in the ICA. In this study, we used the frequency domain ICA program for complex signals to deal with the phase part. This is an extension of FastICA algorithm which was introduced by Aapo and Hyvärinen (2001) and is based on a fixed-point iteration scheme for complex valued signals.

We applied the ICA method to improve horizontal magnetic components in MT data. Two components of ICA using both the data observed in Boso area and the noise free magnetic data observed in Esashi, Sawauchi or Kakioka Magnetic Observatory was applied for each magnetic component. The magnitude of magnetic intensity varies over large ranges in wide frequency band. To work ICA effectively, we needed to divide into narrow frequency bands and applied the ICA at each band. After applying ICA, in order to extract noise free component which showed high correlation with data in noise free site, we kept the noise free component and set to 0 in other noise component. Then we applied inverse matrix of \(W \) to obtain original \(x \), i.e. \(x(t) = W^{-1}u'(t) \), where \(u'(t) \) : components vector after ICA, \(x(t) \) : the original data vector. Finally, we used the BIRRP processing to calculate the apparent resistivity using improved horizontal magnetic components.

After the ICA processing, the apparent resistivity showed gentle change and the phases take non-zero values. This result meant that some parts of the noise components such as near field noise were removed. These results revealed that ICA has a potential to handle noisy data. But, the ICA processing not every frequency band worked effectively and the horizontal magnetic components were well improved by the
conventional remote reference method. Finally, the most suitable apparent resistivity and phases were chosen for each frequency band from the results of both methods.

We estimated the resistivity structure using the improved data and discussed the structures in relation to geological structure and the presence of fluid.

キーワード：MT methods, Magnetotelluric, independent component analysis
Keywords: MT methods, Magnetotelluric, independent component analysis
MT法による房総半島の地下比抵抗構造探査に関する研究
〜MSSAによる前処理の効果〜

MT survey at Boso Peninsula, Japan and its preliminary results
-Effectiveness of Multi-channel Singular Spectral Analysis (MSSA)-

*小泉 直輝1、陳 浩1、吉野 千恵1、服部 克巳1、韓 鵬2、奥田 真央3、菅野 倫大朗3、早川 美里3、茂木 透4、坂中 伸也5
*Naoki Koizumi1, Hao Chen1, Chie Yoshino1, Katsumi Hattori1, Peng Han2, Mao Okuda3, Kotaro Sugano3, Midori Hayakawa3, Toru Mogi4, Shin'ya Sakanaka5

1. 千葉大学大学院理学研究科、2. 統計数理研究所、3. 北海道大学大学院理学研究科地球資源学専攻
1. Graduate School of Science, Chiba University, 2. The Institute of Statistical Mathematics, Tokyo, Japan, 3. Graduate School of Science, Hokkaido University, 4. Division of Sustainable Resource Engineering, Faculty of Engineering, Hokkaido University, 5. Department of Earth Science and Technology, Graduate school of Engineering and Resource Science, Akita University

本研究では、地磁気地電流法(MT法)による房総半島全域の地下比抵抗構造探査を試みた。本研究の目的は以下のとおりである。(1)電磁気学的に房総半島全域の地下比抵抗構造を推定することである。特にプレート境界等の地下比抵抗構造を推定することが地学的なテーマである。(2) ULF帯等の地震電磁気現象が観測された場合、波の発生および伝播機構の解明には、波動の伝播シミュレーションが重要である。伝播シミュレーションは地下の比抵抗構造が重要であり、現実的な結果を得るためには観測データに基づく解析が必要である。(3)人工雑音が多く含まれる地域でMT探査が可能になる、新たな信号処理手法の開発である。関東地域では堆積層が厚く、また、直流電車や工場等からの漏洩電流の影響で、観測されるデータに雑音が多い。そのため、従来MT探査が敬遠されてきた。これらの雑音はどの周波数にも乗るため、波の発生および伝播機械の解明に問題がある。時間領域において雑音を除去する新たな取り組みが必要であり、今回得られたデータを用いてその手法と効果について述べる。

以上の目的のため、2014年11月から2015年3月にかけて房総半島の北部を対象とし、2015年11月から2016年1月にかけて房総半島の南部を対象としてMT探査を実施した。観測点は緯度経度ごとに41箇所設けた。観測地点においてPhoenix Geophysics社のMTU-5, 5A, netを用い、サンプリング周波数15, 150, 2400 Hzのデータを観測した。これらのデータから約0.003 s - 3,000 sのMTインピーダンスを推定する。41箇所の観測点の内12箇所ではテラテクニカ社のU-43も用い、サンプリング周波数1 Hzのデータを観測した。これらのデータから約20 s - 15,000 sのMTインピーダンスを推定する。

MT法により房総半島全域の地下比抵抗を推定するためには、電磁場に影響するコヒーレント/インコヒーレントノイズを除去する手法が必要となる。ノイズを除去するためには、まず従来的周波数領域の手法であるリモートフィレンス法を試みたところ、房総南部のMTインピーダンスは多少の改善が見られたものの、北部のMTインピーダンスは改善が見られなかった。そこで、時間領域で処理を行うマルチチャンネル特異スペクトル解析 (Multichannel-Singular Spectrum Analysis: MSSA) を長期観測点と参照点のMTデータに適用し、S/N比を改善する新たな手法を行った。MSSAによって元の時系列を特異値分解し、観測点と参照点の水平磁場で相対的に高い相関係数を示す主成分を用いて時系列を再構成したところ、リモートフィレンス法で見られる異常を抑制できることがわかった。このことは、時間領域におけるMTデータの前処理の有効性および有望性を示すと考えられる。

長期観測点の再構成時系列にリモートフィレンス法を用いて房総半島の南西から北東方向の地下比抵抗断面を算出したところ、地下約1-2 kmには0.1-10 Ωmの低比抵抗領域が存在した。これは房総半島の地表の大部分を覆う堆積層に含まれる流体の影響と考えられる。南西方向の地下では最深部で約10 kmまで0.1-10 Ω
mの低比抵抗領域が存在するが、超苦鉄質岩類または沈み込む海山によって押し上げられた付加体の影響を反映した領域である可能性がある。
山崎断層系大原断層の地下比抵抗構造の再評価
Reevaluation of resistivity structure beneath the Ohara fault of the Yamasaki fault zone, southwest Japan

小嶋 航1、山口 覚2、倉光 伸2、三村 明1、村上 英記3、加藤 茂弘4、上嶋 誠5
Ko Kozakai1, *Satoru Yamaguchi2, Shin Kuramitsu2, Akira Mimura1, Hideki Murakami3, Shigehiro Katoh4, Makoto Uyeshima5

1. 大阪市立大学理学部、2. 大阪市立大学大学院理学研究科、3. 高知大学教育研究部 自然科学系理学部門、4. 兵庫県人と自然の博物館、5. 東京大学地震研究所
1. Department of Geosciences, Faculty of Science, Osaka City University, 2. Department of Geosciences, Graduate School of Science, Osaka City University, 3. Research and Education Faculty,Kochi University, 4. Division of Natural History, Hyogo Museum of Nature and Human Activities, 5. Earthquake Research Institute, Tokyo University

山崎断層帯は、岡山県東部から兵庫県西南部にわたり、北から那岐山断層帯、山崎断層帯主部、草谷断層の3つの起震断層に区分される活断層帯である。このうち、山崎断層帯主部は、最新活動時期と平均変位速度の違いから、大原断層、土万断層、安富断層、暮坂峠断層からなる北西部と、琵琶甲断層および三木断層からなる南東部に区分される(地震調査研究推進本部地震調査委員会, 2013)。

山崎断層帯主部では、断層セグメント個々の地下構造やそれらが互いにどのように連続しているかを明らかにすることを目的として、Audio-frequency Magnetotelluric(AMT)法探査が展開されている(e.g. Yamaguchi et al., 2010)。ここでAMT法とは、地磁気地電流法の一種で、比較的高い周波数（数Hz～約10kHz）の電磁場変動を信号源とし、地下浅部を高い空間分解能で描出できる手法である。

山崎断層帯主部の北西端に位置する大原断層では、上田ら(2009; 2011)が、長さ約10kmの測線（大原測線と呼ぶ）上の7点でAMT観測を行い、深さ2km付近までの2次元比抵抗構造モデルを求めている。しかし、観測点間隔が広いこと、さらに、観測データに測定装置に起因すると思われる人工的電磁気ノイズの混入が認められる地点があることから、上田らのモデルの信頼性は高いとは言えない。そこで、大原測線上で、上田らの観測点を補完するよう11点の観測点を設け、AMT観測を行った。また、データ解析にRemote reference法(Gamble et al.,1978)を用いるために、北端の観測点から約8km北に離れた人工ノイズが少なくない地点に磁場参照点を設けた。

電場、磁場のそれぞれ水平2成分から、Remote reference法に基づいて、10,400 HzのMT応答関数を算出した。モデル計算に先立ち、Phase tensor法 (Caldwell et al., 2004 ; Bibby et al., 2005) を用いて、比抵抗構造の次元と走向を求めた結果、2次元構造であって比抵抗構造の走向はN45°W-S45°Eと求めた。そして、Akaike's Bayesian Information Criterion (ABIC)による平滑化拘束付き2次元比抵抗インバージョンコード(Ogawa and Uchida, 1996)を用いて、深さ2km付近までの2次元比抵抗モデル（OHRモデル）を求めた。

OHRモデルは、1つの高比抵抗領域（R1）と4つの低比抵抗領域（C1～C4）で特徴づけられる。領域C1は大原断層の地表トレース直下の地下浅部に、領域C2は地表トレース西側の地下約1kmに、領域C3は地表トレース東側の地下約1kmに、領域C4は地表トレース西側の地下約1.5kmに位置する。

本発表では、OHRモデルの解釈および山崎断層系主部北西部大原断層から土万断層に至る領域の地下比抵抗構造について発表する。
キーワード：活断層、比抵抗構造、山崎断層系、大原断層、地磁気地電流法
Keywords: active fault, resistivity structure, Yamasaki fault zone, Ohra fault, Magnetotelluric method
Reliability estimation of MT-data inversion using principal component analysis

*Hisatoshi Koji¹, Tada-nori Goto¹

¹. Kyoto University

電磁探査法の一種である Magnetotelluric (MT)法は、資源探査や活断層調査に用いられている。地下の比抵抗構造を推定する際には、MT法によって求められた見掛け比抵抗・位相などに対して逆解析（インバージョン）を行うことが一般的である。推定された比抵抗モデルは、測定時のノイズや、インバージョンを行う上での諸制約のために、真の比抵抗構造とは異なる近似解と言える。従って比抵抗モデルの信頼性の議論は必要不可欠である。従来の研究では、比抵抗モデルの一部を変更した時に見掛け比抵抗や位相にどの程度の変化が生じるかを計算して、比抵抗モデルの妥当性について検証がなされてきた。しかしながら、この検証方法は定性的かつ主観的なものであり、検証の範囲が適切でないという問題がある。本研究ではこのような課題を解決するべく、比抵抗モデルの定量的かつ客観的な信頼度推定法を開発した。

信頼度推定を行う上で、膨大なモデルパラメータのすべてを評価するのは計算時間の制約上不可能であるが、比抵抗モデル中の特徴的な比抵抗異常体について評価することは可能である。そこで本研究では、空間データ中の主要な構造を抽出する際に用いられる主成分分析に着目し、比抵抗異常体の情報の客観的抽出を試みた。具体的には、まず2次元比抵抗モデルを複数の1次元（柱状）比抵抗モデルへ分割し、これらの柱状モデルに対して主成分分析を行う。得られた主成分には横方向に共通する比抵抗構造が表れると考えられる。さらに各主成分得点を段階的に変化させることで、主な比抵抗異常体を移動、拡大縮小、また比抵抗の値の増減を行い、30種類の新たな比抵抗モデルの作成を試みた。新たなモデルから得られる計算値と観測値の残差二乗和の比較に基づいて、比抵抗モデルの変化幅の許容範囲を評価し、信頼度の推定を行った。

本手法の妥当性を検討するため、仮想的なモデル上での合成データ（TEモードの見掛け比抵抗・位相）に対してインバージョンを行い、得られた比抵抗モデルの信頼度推定を行った。例えば高比抵抗体と低比抵抗体の2つの異常体が存在するモデルに対し主成分分析を行ったところ、第一主成分に2つの異常体が強く表れることが明らかとなった。次に、第一主成分の主成分得点を変化させて新たな比抵抗モデルを作成した。鉛直・水平方向にモデルを変化させ、各方向に対する信頼度評価においては、低・高比抵抗体の水平・上下位置、幅、比抵抗の値についての信頼度を可視化できた。得られた信頼度は、従来から指摘されているMT法（TEモード）のインバージョン結果の傾向と一致することが分かった。

さらに、より複雑なモデルに対しても主成分分析および比抵抗モデル変換を行った。その結果、複雑なモデルに対しても異常体が検出されており、また信頼度の評価も可能であった。今後は信頼度推定の範囲を拡大するなど、手法の改良を行い、実データへの適用を行う予定である。

キーワード：MT法、主成分分析、2Dインバージョン

Keywords: magnetotellurics, PCA, 2-D inversion
The magnetotelluric (MT) impedance tensor exhibiting anomalous phases greater than 90 degrees are sometimes observed. Since simple 1D or 2D models do not generate such responses, the appearance of them puts a difficulty on the analysis of MT data. The origin of anomalous phases due to characteristic geo-electric structures has been extensively investigated: some attribute to 3D conductive objects and others to 2D anisotropic structures. On the other hand, noises, imperfection of device or tiny objects near an observation site might induce anomalous phase behavior. Inspecting these possibilities and discriminating them for each data will contribute to improve the interpretation of MT responses.

Anomalous phases were observed at several sites in the observation in western Shikoku (Yoshimura et al, 2016). To exploit more detailed properties, we performed a denser, multi-spacing MT observation around one of the sites showing anomalous responses in that observation. Along with standard MT method measuring three components of magnetic field and two components of horizontal electric fields (3H2E), we measured redundant four components of electric fields (3H4E) at two sites. This is intended to examine the possibility of device or tiny objects.

The estimated response functions show the reproducibility of anomalous responses irrespective of the arrangement of electrodes, which confirms that the cause is different from device or tiny objects. Responses at different sites impose some restrictions on the spatial distribution where anomalous phases appear at this region, and we discuss the origin of anomalous responses.
直流電流により生じる岩石試料表面の電位イメージング

DC potential imaging of a granite surface

*鈴木 健士¹、吉村 令慧²、山崎 健一²、大志万 直人²
*Takeshi Suzuki¹, Ryokei Yoshimura², Ken’ichi Yamazaki², Naoto Oshiman²

1. 京都大学大学院理学研究科、2. 京都大学防災研究所
1. Graduate School of Science, Kyoto University, 2. Disaster Prevention Research Institute, Kyoto University

岩石試料（〜10 cm）の電気比抵抗構造を明らかにすることは、地球物理学的観測によって得られた結果を正しく解読するために重要であるが、同時に難しいとされてきた。岩石試料に電流を印加して、その表面に生じた試料表面の電位分布を面的に測定することができれば、岩石試料内部の比抵抗分布を求めることができる。しかし、高抵抗な岩石試料に十分な電流を印加すること自体が難しい。また、その際に、漏えい電流を防ぐことも難しい。さらに、高い導通性能を保ちながら試料側面に高密度で接着・配置できる電極素材は少ない。以上のように、岩石試料の電位分布測定は実現していなかった。

我々は、測定手法を工夫することで、直流電流により生じる花崗岩表面の電位分布測定を試みた。まず、高抵抗な岩石試料の電位測定を実現するため、高入力インピーダンスのエレクトロメーターを用いた。また、測定中の漏えい電流を防ぐため、シグナルグランドとアースを電気的に分離するフローティング測定と呼ばれる計測方法を用いた。そして、試料表面への高密度な電極配置を実現するため、導電性エポキシ樹脂を点電極として用いた。

上記の方法を用いて、花崗岩試料に電流を印加し、その表面電位分布を面的に測定した。得られた電位分布は数値計算の結果と大雑把にではあるが一致した。従来困難だと考えられてきた岩石試料の比抵抗分布推定の実現可能性を示す結果だと言える。

キーワード：岩石の電気比抵抗、室内実験、高入力インピーダンスのエレクトロメーター、フローティング測定、導電性エポキシ樹脂

Keywords: electrical resistivity of rocks, laboratory tests, electrometer with extremely high input impedance, floating measurement, conductive epoxy
地熱地域岩石コアの室内透水試験における電気インピーダンス測定

Electrical impedance measurement of geothermal reservoir rock under fluid-flow test

*澤山 和貴1、北村 圭吾2、藤光 康宏3
*Kazuki Sawayama1, Keigo Kitamura2, Yasuhiro Fujimitsu3

1. 九州大学大学院工学府地球資源システム工学専攻、2. 九州大学カーボンニュートラル・エネルギー国際研究所、3. 九州大学大学院工学研究院地球資源システム工学部門
1. Department of Earth Resources Engineering, Graduate school of engineering, Kyushu University, 2. International Institute of Carbon Neutral Energy Research, Kyushu University, 3. Department of Earth Resources Engineering, Faculty of engineering, Kyushu University

地熱資源の持続的な利用を可能にするためには、枯渇した地熱貯留層への人工涵養法（Enhanced Geothermal System; EGS）の開発が不可欠である。このEGSを行う上では、地下深部の貯留層における熱水飽和度の推定が極めて重要であり、近年、Magnetotelluric (MT)法を用いた比抵抗構造探査の適用が注目されている。MT法では、低周波数帯域のインピーダンス特性を調べることで地下深部の情報を得ることができるが、電気インピーダンスと水飽和度の相関を調べた研究は少ない。本研究では、地熱貯留層を構成する岩石の水飽和度と電気インピーダンスの関係を実験的手法によって明らかにすることを目的とし、岩石コアの室内透水試験を行った。サンプルは、人工的に亀裂を生成した安山岩（牧園溶岩、空隙率11%）の円柱コア（直径35 mm、長さ70 mm）を用い、封圧20 MPa、温度25 ℃の条件下で透水試験を行った。このサンプルにリボン状のAg-AgCl電極と圧電素子をとりつけることで、透水試験中の電気インピーダンス（測定周波数10⁻²〜10⁻⁵ Hz）と弾性波速度を測定している。実験は、はじめに過熱蒸気を模擬した窒素ガス（間隙圧10 MPa）で空隙を充填させたのち、模擬地層水（1 wt-% KCl溶液、電気伝導度1.75 S/m）を一定圧力（11, 12, 14, 16, 18 MPa）で注入した。この空隙の窒素—塩水置換によって水飽和度を変化させている。安山岩を用いて実験を行った結果、塩水注入前の電気インピーダンスは10⁵Ωのオーダーであったのに対し、注入後の電気インピーダンスは10³Ωのオーダーと2桁ほど減少した。この顕著な電気インピーダンスの減少は、岩石中にあらかじめ注入していた窒素ガスが、注入した塩水によって置換されたためであると考えられる。また、注入圧力の上昇に伴い、電気インピーダンスには系統的な減少が確認され、注入水圧が18MPaのときでは、11MPaのときに比べて40%ほど減少した。注入水圧をステップ上昇させて増圧過程を調べた後、注入水圧を下降させていく減圧過程においても同様の測定を行った。その結果、減圧過程のときの電気インピーダンスは、増圧過程における同じ注入水圧のものに比べてや小さい傾向にあり、注入水圧が11 MPaのときでは27%ほどの減少が確認された。一方で、同時に測定していたP波速度は、注入水圧の変化によってほとんど変化しなかった。これは、減圧過程の微小な水飽和度の変化に対して、電気インピーダンスが敏に反応したが、P波速度ではこの変化を感知できなかったことを示している。これらの結果から、電気インピーダンスは、P波速度に比べて微細な水飽和度の変化に対する感度が高いことが明らかになった。このことは、地熱貯留層における緩やかな水飽和度の変化が、電気インピーダンスによってモニタリング出来る可能性を示唆している。

キーワード：電気インピーダンス、弾性波速度、水飽和度、透水試験、EGS（地熱涵養系）
Keywords: electrical impedance, elastic wave velocity, water saturation, fluid-flow test, EGS (Enhanced Geothermal System)
Continuous measurement of electrical conductivity for monitoring contact state of simulated fault during frictional sliding

*山下 太¹, 福山 英一¹, 溝口 一生²
*Futoshi Yamashita¹, Eiichi Fukuyama¹, Kazuo Mizoguchi²

1. 国立研究開発法人防災科学技術研究所、2. 一般財団法人電力中央研究所
1. National Research Institute for Earth Science and Disaster Resilience, 2. Central Research Institute of Electric Power Industry

室内実験において、すべっている模擬断層の力学的パラメータを他の観測量とともにモニタリングすることは、岩石の摩擦特性ひいては地震の動力学を理解する上で貴重な情報をもたらす。この観点から、我々はすべり面上の接触状態をモニターできる可能性のある断層の電気特性に着目した。円柱形のインド産変はんれい岩一組を実験試料として用い、それらを防災科学技術研究所が所有する高速回転せん断摩擦試験機に設置した。この試験機はスリップリングを介すことで回転中であっても回転側試料のセンサーから電気信号を取り出すことができる。直径25 mmで長さ30 mmの試料を2個重ねて実験に用いた。乾燥岩石試料の極めて高い抵抗値を測定するために、最大入力インピーダンスが200 TΩである2台のエレクトロメーター（Keithley 6514）を使用した。1台のエレクトロメーターによって模擬断層を横切る直流電流を入力し、もう1台によって断層間の電位を測定した。まず我々は模擬断層の電気的特性を把握するため、静的状態での予備実験をおこなった。急激な電流の入力に対して電位が過渡的な応答を示すことから、接触している断層は抵抗素子とコンデンサー素子の並列回路と見なすべきであることが明らかとなった。この過渡応答より、垂直応力が0.1 MPaから8 MPaにおける断層の抵抗およびキャパシタンスの値を推定したところ、垂直応力が高くなるにつれ抵抗が減少しキャパシタンスが増加していることがわかった。このことは、真の接触部とその他の部分（非接触部）がそれぞれ抵抗素子とコンデンサー素子として機能していると仮定すれば、高い垂直応力によりアスペリティの真の接触が増加する一方でアスペリティの高さが減少しているためと解釈できる。したがってこの実験結果は、アスペリティの電気伝導度（比抵抗の逆数）が一定である限り、抵抗とキャパシタンスの測定値から真の接触面積を見積もりることが可能であることを示唆している。次に我々は、準地震すべり速度（5.3 ×10⁻³ m/s）で垂直応力が3 MPaの条件下における断層の電気伝導度モニタリングをおこなった。この条件下で、せん断応力と垂直応力の比で定義される摩擦係数は典型的なすべり弱化を示した。すなわち、すべりが始まるとき同時に0.8まで上昇した後0.2まで低下し、その後のは2.6の間で変動した。電気伝導度データは摩擦強度と非常に似た変動を示し、摩擦係数が増加した際には電気伝導度も増加した。さらに、測定した電気伝導度データより、すべりにはほぼ真の接触面積およびその強度の変化を推定した。その結果より、初期のアスペリティはすべり弱化の起こる初期の段階で完全に破壊され、その後のガウジの粉砕フェイズの方がすべり弱化プロセスにおいてはより支配的であることが示唆された。我々はさらに地震性すべり速度（1 m/s）で垂直応力が3 MPaの条件下における断層の電気伝導度モニタリングをおこなった。この条件下では、せん断の岩石は摩擦熱によって溶融し、その強度を大きく失うことが知られている。Hirose and Shimamoto (2005)は弱化プロセスが2つの強化ステージとその間の1つの強化ステージからなり、それらは摩擦溶融中のメルトパッチの生成とその後の溶融層の成長に関連していると報告している。我々の電気伝導度モニタリングは2つの弱化ステージにおける急激な伝導度の上昇を示し、定性的ではあるが明確にこれらのプロセスを確認することに成功した。以上の結果は、電気伝導度がさまざまなすべり速度ですべっている断層の接触状態を明らかにする優れたツールであることを示している。

キーワード：電気伝導度、摩擦実験、断層、アスペリティ
Keywords: Electrical conductivity, Friction experiment, Fault, Asperity
A trial of automatic structure analysis for magnetic survey in case of sharp boundaries of magnetization

Shin'ya Sakanaka

1. Graduate school of International Resource Sciences, Akita University

Utilizing the modern computing technology, highly complex structure can be automatically analyzed by inverse technique in geophysical exploration. Usually a number of blocks are assigned in the structure model numerically constructed and finally the parameters like as magnetization, density, and conductivity are determined for respective blocks. If the number of the blocks is larger than the number of observed data, that is so-called the under-determined problem. To solve the under-determined problem in inversion analysis, we have to include additional condition like as smoothness. The smoothness is one of promising condition in order to solve the under-determined problem and widely used. The resulted structure model with smoothness is a reasonable model in various cases. However, a structure model with non-smoothness is sometimes necessary in specific problem. We have an opportunity to conduct a magnetic survey at the site above the dacite intrusive rocks. This is one of stereotypes of structure with non-smoothness boundary. We want to have the technique to automatically analyze this kind of structure with sharp boundaries. Here we try to show one of effective algorithm to seek the numerical model with sharp boundaries. The algorithm is a kind of grid searches but effectively saving the amount of calculation. Firstly the structure model with two parameters alone, i.e. with two kinds of the values of the magnetization. Next the structure model with three parameters and more. So far, the algorithm is able to apply to the magnetization in magnetic survey or density in gravity survey. But this kind of algorithm is expected to apply to the problems with conductivity in the future.

Keywords: magnetic survey, grid search, Inversion
ドローンを用いた空中磁気観測システムの開発

Development of aeromagnetic survey system using multicopter.

*宇津木 充1、橋本 武志2、城森 敦善3
*Mitsuru Utsugi1, Takeshi Hashimoto2, Atsuyoshi Jomori3

1. 京都大学大学院理学研究科附属地球熱学研究施設火山研究センター、2. 北海道大学大学院理学研究科附属地震火山研究観測センター、3.（有）ネオサイエンス
1. Aso Volcanological Laboratory, Institute for Geothermal Sciences, Graduate School of Science, Kyoto University, 2. Institute of Seismology and Volcanology, Graduate School of Science, Hokkaido University., 3. NeoScience Inc.

京都大学火山研究センターでは、有限会社ネオサイエンス社（大阪府泉南市男里5丁目11-22）への委託事業として小型無人機（ドローン）を用いた火山活動域近傍における磁場観測システムの開発を行い、実フィールドでのテストフライトとして阿蘇米塚火山での空中磁気観測を行った。尚、本事業は文部科学省「災害の軽減に貢献するための地震火山観測研究計画」の一環として行った。

平成26年11月に、御嶽火山において水蒸気噴火が発生し多くの犠牲者を出した。この事態を受け、文部科学省「災害の軽減に貢献するための地震火山観測研究計画」の事業の一環として、水蒸気噴火後の地下浅部の熱的状態把握を目的とした有人ヘリコプターによる空中磁気観測計画を計画した。地磁気観測は地下浅部の温度が空間的にどのように分布を持つかを知るうえで非常に効率の良い方法であることが知られている。さらに測定デバイスの安定性から、航空機を用いた地磁気観測を空中から高密度で行うことが可能であるという利点も併せ持つ。こうした手法を用い火山の活動域地面の熱的状態を高分解能で把握することは、噴火のメカニズム解明、今後の噴火予測を行う上で非常に重要な情報となる。しかし今回の御嶽火山では、当該地域の飛行規制のため有人機による観測を実施することができなかった。

従来、空中磁気観測は有人の航空機を用いて行われていたが、今回のように噴火直後は、メカニズム解明、噴火予測を行う上で最も重要な情報が必要なにも拘わらず、安全性の観点から調査が不可能な状況が殆どである。こうした事から、今回の御嶽火山の事例を教訓として、近年様々な用途で盛んに用いられるようになった小型無人機（ドローン）による空中磁気観測システムの開発を行う事とした。

観測システムの開発は（有）ネオサイエンス社に委託した。このシステムで使用するマルチコプターはDJI S1000、磁力計センサはBartington Mag566フロックスゲート3成分センサである。磁気サーベイでは全磁力を計測する事が一般的だが、既存の全磁力型磁力計はS1000のペイロードをわずかに超えてしまう事から今回は軽量、省電力な3成分センサを使用した観測から得られる3成分データを元に全磁力値を求め、対象地域の全磁力異常分布を求める。この観測システムの実証試験として、2016年8月に阿蘇米塚火山周辺で空中磁気観測を行った。米塚火山では橋本他(2007)により詳細な全磁力異常の地上観測が実施されている。このデータに上方接続を施したものとの比較から本観測システムの精度の検証を行う。本発表では米塚での観測のデータ及びその精度検証の結果について報告する。

キーワード：空中磁気探査、マルチコプター
Keywords: aeromagnetic survey, multicopter
2014年11月阿蘇山マグマ噴火前後のACTIVE観測結果を説明する三次元比抵抗構造推定の試み

Attempt at three-dimensional modelling of temporal change in resistivity structure beneath Aso volcano through the magmatic eruption in November, 2014

*Takuto Minami¹, Mitsuru Utsugi²

1. Ocean Hemisphere Research Institute, Earthquake Research Institute, The University of Tokyo, 2. Aso Volcanological Laboratory, Kyoto University

In Aso volcano in the center of Kyushu island, Japan, a magnetic eruption occurred on November 25th, 2014, for the first time since the last magmatic event in 1993. Since the magmatic eruption in 2014, phreatic/phreatomagmatic eruptions have occurred several times in Aso volcano recently. To monitor the activity of Aso volcano, a group in Kyoto University have been operating an electromagnetic monitoring system, ACTIVE (Array of Controlled Transient Electromagnetics for Imaging Volcano Edifice; Utada et al, 2007), around the active first crater of Aso volcano. ACTIVE system in Aso volcano consists of one transmitter that transmits electric currents into the ground through two electrodes, and several induction-coil receivers that observe only the vertical component of the magnetic field. In ACTIVE observation results before and after the magmatic eruption on November 25th, 2014, we found obvious temporal changes in the response function, the amplitude ratio of the received magnetic field to the transmitted electric current (nT/A). At the western rim of the first crater, larger amplitudes of the response function were observed over frequencies ranging 10 to 100 Hz after the magmatic eruption. Some movement of underground water/magma may be responsible for the temporal changes.

In order to interpret the ACTIVE data obtained before and after the magmatic eruption including topographic effects appropriately, we developed a three-dimensional forward code, by adopting a vector finite element method (FEM). In our forward modelling, the induction equation in terms of the vector potential, A, is solved with the gauge potential of phi=0 (Hano, 1991). We adopted unstructured tetrahedral mesh to represent arbitrary resistivity structure and complicated topography of volcanos. We demonstrated accuracy of our forward code in comparison to an analytical solution of Ward and Hohmann (1988), in a situation where a horizontal electric dipole is located just on one-dimensional layered structure. Currently, we are trying to apply an existing background conductivity structure obtained by AMT surveys to the background structure in our modelling, to investigate the cause of the temporal changes in the ACTIVE responses. In our presentation, we plan to show our results of forward modelling to interpret the temporal changes observed by ACTIVE system before and after the magmatic eruption in November, 2014.

Keywords: Aso, volcano, electromagnetic, monitoring, resistivity
Aso caldera, with a diameter of up to 25 km, is situated on the island of Kyushu in the Southwest Japan Arc. The caldera was formed during 270–90 ka by four huge eruptions that produced hundreds of cubic kilometers of pyroclastic deposits. A number of post-caldera cones/volcanoes exist at the central part of the caldera and Naka-dake, one of the cones, has cyclically erupted since the sixth century. In the past few years, Naka-dake experienced a magmatic eruption in November 2014, a phreatomagmatic eruption in September 2015, and an explosive eruption with spewing volcanic ash 11,000 m into the air in October 2016.

The crustal structure beneath Aso caldera has been studied previously by electromagnetic and seismic surveys. Seismic tomography of the crust has identified low-velocity anomalies beneath the caldera that may correspond to magma chambers [e.g., Sudo and Kong, 2001; Abe et al., 2010]. Sudo and Kong [2001] reported a spherical low-velocity anomaly centered at 6 km depth that flattens at 10 km depth to the west of Naka-dake. Abe et al. [2010] reported a large, low S wave velocity layer at a depth of about 17 km, corresponding to the Conrad discontinuity in and around Aso caldera. Hata et al. [2016] revealed a possible magma pathway in the form of a significant series of electrical conductive anomalies in the upper crust, extending north from Naka-dake at depths of >10 km. However, the space resolution of a magnetotelluric (MT) survey was insufficient to examine the lower crustal strucrte in the electrical resistivity/conductivity model for a deep-seated magma reservoir associated with the post-caldera magmatism beneath Aso caldera.

We had carried out a MT survey of about 40 sites mainly at the outer part of the caldera from Nov. to Dec. 2016 in addition to the previously obtained about 50 sites in the caldera from Nov. to Dec. 2015. By using the period range between 0.005 and 2,380 s of MT data for about 100 sites in total, we try to perform three-dimensional (3-D) inversion analyses in order to obtain a crustal-scale electrical resistivity structure (model). In the inversion process, we use a parallelized DASOCC inversion code [e.g., Siripunvaraporn and Egbert, 2009]. In this presentation, we will show the new crustal-scale resistivity model beneath Aso caldera.
Predicting 3-D resistivity structure from magnetotelluric data in the southern geothermal area of Hokkaido, Japan

*Midori Hayakawa¹, Toru Mogi²

1. Hokkaido University, Graduate school of science, 2. Hokkaido University, Faculty of Engineering

北海道南部に位置する渡島半島は、地温勾配が高く、特に中央に位置する八雲-濁川ゾーンは、最近の火山活動見られないが最も高い。この地域では、地熱兆候地や温泉が多く確認されており、これまでに地熱開発促進調査が様々な方法で行われてきた。本研究では、2015年に新たに行われたMT探査データを用いて、2次元インバージョン（Ogawa and Uchida, 1996）を行い、その結果を昨年報告した。その後、同じ測点のデータを用いてModEM（Egbert and Kelbert, 2012）による3次元インバージョンを試みた。その結果、2Dインバージョンの結果とは異なる比抵抗構造が得られた。その3インバージョン結果の妥当性を調べるために、我々は、直方体構造を用いてインバージョンの再現性テストを行った。その結果、等間隔で規則正しく配置した測点のデータを用いた結果は、正しく再現されたが、2Dの場合と同じ配列の測点では、インバージョンの結果は同じ形が得られなかった。その結果から、3次元インバージョンでよい結果を得るには、規則的な密な測点配列データが必要であることがわかった。八雲地域で測点配列は不規則で狭らでもあるので、それを利用したインバージョン結果は正しい結果とはいえないであろう。

キーワード：MT法、3次元インバージョン、ModEM
Keywords: Magnetotelluric method, 3-D inversion, ModEM
和歌山県有田川非火山性群発地震活動域における広帯域MT観測
Wideband MT survey in Aridagawa non-volcanic earthquake swarm region, Wakayama Prefecture

*田村 慎1, 上嶋 誠2, 小河 勉2, 山内 泰3, 稲垣 岳弘4, 加藤 厚志5
*Makoto Tamura1, Makoto Uyeshima2, Tsutomu Ogawa2, Yasushi Yamauchi3, Takehiro Inagaki4, Atsushi Kato5

1. 地方独立行政法人北海道立総合研究機構 地質研究所、2. 東京大学地震研究所、3. 東京電力パワーグリッド株式会社、4. 関西電力株式会社、5. 電源開発株式会社

和歌山県北西部では、非常に活発な非火山性群発地震活動が発生している。その南縁にあたる有田川流域の微小地震の震源分布について、Kato et al. (2010) では地震波トモグラフィーによる速度構造推定などの結果、群発地震の発生に流体が関与している可能性について指摘した。そこで、上嶋ほか（2010）では、群発地震域の地下で流体がどのように分布しているのかを明らかにするため、広帯域MT観測を実施した。得られたデータによる二次元抵抗構造解析の結果、群発地震活動域の中下部地殻内に低抵抗帯を検出し、流体が関与した構造であると推定した。しかし、インバージョンに用いたMT応答関数によって推定されるスタティックシフトレベルの差異が大きかったことなどから、低比抵抗帯の上部の深度について定性的な情報が得られず、群発地震域と低抵抗帯との深さ方向の相対関係について議論することが出来なかった。また、海岸線から数km程度内陸に入った南北走向の1測線のみの探査であったため、走向方向の構造変化や海水の影響の評価などについて課題が残された。

そこで今回、上嶋ほか（2010）で探査・解析された測線の東側、有田川中流域を南北に横断する測線で広帯域MT観測を実施した。観測は2015年5月8日〜21日に5地点で実施し、電場水平2成分、鉛直も含めた磁場3成分の時系列を測定した。収録機器は独国Metronix社製ADU-07、電場電極としてPb-PbCl2電極、磁場コイルとしてMFS-06およびMFS-07eを用いた。参照点には地熱技術開発株式会社が設置した山形県大蔵村参照点のデータを用いた。

探査に使用した周波数は1024Hzであり、機器設置時の正時から機器撤収時まで、1時間に1回データファイルを生成・保存し続けるように観測スクリプトを設定した。得られた電磁場の時系列データに対し、ADU付属のソフトウェア“tsmp”によりアスキー化処理を行った後、低周波側の構造解析を行うため1024Hzデータにダウンサンプリング処理を実施し、32Hzおよび1Hzデータを作成した。

また、1024Hzデータについては商用電源や高圧直流送電線の影響を除去するために、60Hzから30Hzおきの570Hzまで（60, 90, 120, 150…600Hz）の各周波数データに対し、各々の0.2Hz幅の範囲（60Hzなら59.8〜60.2Hz）のデータを1/1,000倍にする処理を行った。

以上の処理の後、1024Hz、32Hzおよび1Hz値をBIRRP（Chave and Thomson, 2004）で解析し、384〜0.000488Hzの間の34周波数個について見かけ比抵抗、位相および各々のstandard errorを算出した。その後、ノイズの多いデータ等を除去するために目視でデータの取捨選択を行い、以降の解析には384〜0.0039Hzの間の34周波数のデータを用いた。また、探査地域近傍では直流電車（紀勢本線）が走行し、昼間のデータには人工ノイズの混入が顕著に認められたことから、1024Hzデータの解析には毎日深夜2時〜5時の3時間分のデータのみを使用した。

MT探査によって得られた結果に対し、二次元走向の検討を行うため、GB分解（Groom and Baily, 1989、コードとしてChave and Smith, 1984にもとづく）を行う解析（Toh and Uyeshima, 1997）を試みた結果、最適な走向としてN2.3度Wが得られた。この走向には90度の不確定性があることから、おおむね南北、または東西方向が解析地域における支配的な二次元構造の走向となる。上嶋ほか（2010）においても同様の解析結果が得られ、主要な地質境界や構造線などの走向傾向から東西方向を二次元構造の走向と判定している。
て、今回の結果と調和的である。

GB分解によって得られた二次元インピーダンスを用い、REBOCC 2-D インバーションコード（Siripunvaraporn and Egbert, 2000）を用いた二次元構造解析を行った。データセットとしてTM、TE両モードの見かけ比抵抗と位相データを用いたインバーションの結果では、探査領域全般にわたりの深度4km〜10km付近に10Ω・m以下の低比抵抗域が検出された。一方、TMモードの見かけ比抵抗と位相のみを用いた場合、低比抵抗域は有田川中流域から南側に限定して分布し、比抵抗値も1Ω・m前後と低く検出された。本発表ではこれらの結果に加え、上嶋ほか（2010）において今回の測線上で実施された探査結果を加えた解析、および当該地域における微小地震活動との関連性についての検討結果について報告する予定である。

キーワード：広帯域MT観測、和歌山県有田川地域、非火山性群発地震活動

Keywords: Wideband MT survey, Aridagawa region, Wakayama Pref., non-volcanic earthquake swarm region
中国・四国地方の基盤的比抵抗構造調査（2016年度）
A research report on the fundamental investigations of an electrical resistivity structure beneath Chugoku and Shikoku regions, southwestern Japan (2016)

塩崎 一郎1, 宇都 智史1, 山本 真二2, 池添 保雄2, 畑岡 寛1, 川口 智1, 福本 悠也2, 吉村 令慧3, 村上 英記4, 大志万 直人3, 飯尾 能久3

Ichiro Shiozaki1, Tomofumi Uto1, Shinji Yamamoto2, Yasuo Ikezoe2, Hiroshi Hataoka2, Tatsuya Noguchi1, Satoru Kawaguchi1, Yuya Fukumoto2, Ryoei Yoshimura3, Hideki Murakami4, Naoto Oshiman3, Yoshihisa Iio3

1. 鳥取大学大学院工学研究科、2. 鳥取大学工学部、3. 京都大学防災研究所、4. 高知大学教育研究部
1. Graduate School of Engineering, Tottori University, 2. Faculty of Engineering, Tottori University, 3. Disaster Prevention Research Institute, Kyoto University, 4. Research and Education Faculty, Kochi University

本研究では、地震・火山噴火による災害の軽減に貢献するために、中国・四国地方において基盤的な比抵抗構造調査を行い、地殻・マントル上部の空間・構造的不均質性を明らかにすることを目的とする。山陰地域では、歪み集中帯外における地震発生と比較的長い期間に噴火記録のない火山と地殻流体との関連を解明すること、内陸地震発生域と内陸地震空白域および深部低周波地震域の構造的不均質性、また、四国地方では、地殻地震および深部低周波地震の発生様式と構造的地域性等について、沈み込む海洋プレートから供給が想定される流体との関連を解明することが重要である。ここでは、2016年に取得されたデータを取り入れた中国・四国地方における基盤的比抵抗構造調査の概要を報告する。

これまでに京都大学防災研究所並びに鳥取大学大学院工学研究科を中心とする研究グループは、山陰地方や四国地方外帯において電気比抵抗構造と地震活動の間に密接な関連がみられることが示してきた。(1) 例えば、山陰地方東部では、鳥取地震（1943年、M=7.2）の地震断層である吉岡・鹿野断層をはじめとして、顕著な地震の震源域およびそれらを含む日本海沿岸部に沿う帯状の地震活動域を横切る測線でMT調査を実施し、ほぼ東西方向に伸びる地震活動帯に沿って、高比抵抗領域である地震発生層の下、地殻深部に低比抵抗領域の存在を明らかにした。

これと調和的な研究成果が測地学研究から示された。国土地理院GPS電子基準点データ解析により、鳥取・島根北部が南部に対して相対的に東に5mm/年で変位しており、歪みが集中しつつあることが判明し、この「ひずみ集中帯」と1943年鳥取地震、1983年鳥取県中部の地震、2000年鳥取県西部地震との関連が示唆された（西村(2015))。

しかしながら、先述の山陰地方の電気比抵抗研究グループが提唱してきたモデルと調和しない研究成果（例えば、塩崎他(2015)）も示され、1943年鳥取地震の地震断層である鹿野・吉岡断層西方延長部の低比抵抗領域が空間的にどのように連続するのかを解明するための調査研究の重要性が示された。内陸地震が地震活動帯直下の不均質構造に起因する局所的な応力集中により発生する（飯尾, 2009）ならば、このような不均質構造について今後はさらなる面的な構造データの充実を図ることが必要である。

このような背景のもと、2016年10月21日鳥取県中部の地震（M6.6）が発生した。この地震の発生域の東方約10kmの地域では、2015年10月以降となにかと地震が発生している上、さらにその東側は1943年鳥取地震の地震断層である鹿野・吉岡断層の西方延長域にあたる。これを受け、断層直下の下部地殻の不均質構造の実態の解明をめざし、中部の震源域を中心とするエリアにおいて震央を横切る複数の測線を設定して、自然界に存在する微弱な電磁場変動を信号とする広帯域MT観測を計16地点で実施した。既存のMTデータを統合して、determinant impedanceをもとにしたボスティックインバージョン1次元解析の結果から、2015年の地震発生域から2016年の地震発生域にかけて深さ10km前後に低比抵抗領域が連続して帯状に存在することが示された。

（2）一方、四国地方においては、主に外帯での調査結果から上部地殻内に顕著な低比抵抗領域が存在
し、それと中央部・西部では無地震域との明瞭な関連が示唆されている。

本年度は、四国地方中央部周辺の未測定地域において広帯域MT法観測を計8地点で実施した。いずれの地域も近隣にJR予讃線や土佐電気鉄道が稼働している。その軌道からの漏洩電流の混入により影響を受け、周期10秒以上の長周期帯にかけて連続したデータを得られた地点が半数程度にとどまった。ただし、南部地域では、これまでの観測で指摘された見かけ比抵抗値が周期数10秒から100秒あたりで最小値を示すという特徴が、共通してみられることが確認された。

既存のMTデータを統合して、試みに、四国中西部地域を地質構造と調和的なN75E走向の2次元構造をもと仮定してOgawa and Uchida (1996)のコードを用いて構造解析を行った。その結果得られた予察的な比抵抗モデルから、上部地殻深度では中央構造線北側で見られる北傾斜の震源分布と調和する北傾斜の比抵抗構造が描かれる等、興味深い特徴が示された。

謝辞：鳥取県中部の地震域並びに四国地方の観測では文部科学省による災害の軽減に貢献するための地震火山観測研究計画の、また、鳥取県中部の地震域周辺のデータ取得には2016年度鳥取県環境学術研究等振興事業の支援を受けた。本研究の観測では京都大学防災研究所の共同研究機器を使用した。参照磁場記録は日鉄鉱コンサルタント株式会社の無償提供データである。京都大学大学院理学研究科比嘉哲也ならびに鳥取大学大学院工学研究科山本健直，福成将之，鳥取大学工学部吉田祐成，岡部史弥の各氏には観測をサポート頂いた。ここに謝意を表す。

キーワード：2016年10月21日鳥取県中部の地震、四国地方、電気比抵抗、基盤的構造調査

Keywords: Earthquake in the Central Tottori Prefecture on October 21, 2016, Shikoku region, electrical resistivity, fundamental investigation
Nation-wide spatial distribution of the ultra-long period magnetic transfer functions in the China Mainland

*Yiren Yuan¹,²,³, Makoto Uyeshima¹, Qinghua Huang³, Qi Li²

1. Earthquake Research Institute, the University of Tokyo, 2. Institute of Geophysics, China Earthquake Administration, 3. Peking University

China mainland located in the south part of the Eurasian continent is an interesting area, where the Pacific plate is subducting from the east, and the Indian continent collides from the south. Recently, several seismic tomography researches revealed stagnant Pacific slab deep below the central to northern part of China. High crustal heat flow as well as the Neogene-Quaternary basaltic volcanic activities in the NE China area has been interpreted due to the subducting or stagnant Pacific slab and possible fluid supply from the slab. India-Eurasia collision also causes significant crustal uplift in the Tibet and clockwise rotation in the eastern part of the suture. Investigation of nation-wide very deep electrical conductivity structure beneath China mainland will enable us to have a better understanding of the dynamics of the continent and generation mechanism of the intra-continental earthquakes and volcanoes, since electrical conductivity is particularly sensitive to the presence of interconnected highly conductive phases, such as partial melts or aqueous fluids.

In this study, in order to elucidate the mantle electrical conductivity structure down to the transition zone beneath whole China mainland, we investigated the geomagnetic records obtained by the National Geomagnetic Center of China. We analyzed hourly geomagnetic data from 42 stations with absolute measurements for nearly 8 years (2008/01/01-2016/12/31). After we calculated the angle between azimuth of the geomagnetic pole and that of the geographic pole at respective stations with the aid of the IGRF models, we obtained the geomagnetic data rotated to the geomagnetic dipole field coordinates. The vertical component to the horizontal components transfer functions (GDS transfer functions) and inter station horizontal field transfer functions of periods up to 100days were estimated with the aid of the remote reference method with a robust estimation scheme. In the presentation, we will show the characteristics of the spatial distribution of both the GDS and the horizontal transfer functions. We will also show results from the OCCAM 1-D inversion with minimum and smooth structure constraints by using the GDS transfer functions.

Keywords: geomagnetic depth sounding, horizontal transfer function, china mainland, ultra long period, mantle electrical conductivity structure
Synthetic test for a 3-D global inversion of the electrical conductivity by using the Sq band

*Takao Koyama

1. Earthquake Research Institute, University of Tokyo

The electrical conductivity is sensitive and enhanced due to the presence of fluids, high thermal anomaly, metals and so forth, and is one of the important physical parameter to elucidate the interior and dynamics of the Earth. The electromagnetic sounding is a suitable tool to reveal the electrical conductivity structure in the deep Earth, and has been widely used for over a hundred years. For shorter periods than 10000 sec, a plain wave approximation of the EM field may be valid and generally used in, say, magnetotelluric method. For longer periods than a few day, a simple P10 distribution approximates well the EM variations in global scale. An intermediate band, however, has complex distributions and careful consideration of a spatial distribution of the EM variation must be necessary.

In this study, we test the 3D global inversion by using the synthetic data with higher modes of the spatial distribution. In a forward modeling part, an integral equation method is used, as the boundary conditions are already satisfied in synthetic Green's functions and thus numerical grids are not necessary in the air. In an inversion part, a quasi-Newton method and an adjoint approach are adapted to reduce a number of forward calculations.

In this presentation we show the synthetic results and discuss the possibility to elucidate the electrical conductivity structure in the mantle, especially, mantle transition zone and around by using the Sq field data.

Keywords: Sq, electrical conductivity, inversion
Estimation of the seafloor electromagnetic responses in the mixed excitations band by using Sompi Spectral Analysis

*LI RUIBAI*¹, Hisayoshi Shimizu¹, Kiyoshi Baba¹, Hisashi Utada¹

¹Earthquake Research Institute, the University of Tokyo

Electromagnetic (EM) responses such as magnetotelluric (MT) impedance and geomagnetic depth sounding (GDS) response in the period range between several minutes to one day are used to study the electrical conductivity in the upper mantle. Spatially uniform and quasi-random magnetic field variations due to geomagnetic disturbances are considered as the source field in regional EM induction studies using the EM responses. However, the magnetic field variations in the period range from 10^4 to 10^5 seconds contain those with different spatial structure such as the solar quiet (Sq) daily variations and those induced by the ocean tide. Because of this, the period band is referred to as mixed excitation band (ME band). Careful treatment of EM field data is necessary to estimate responses in the ME band that reflect actual conductivity structure. For example, Baba eta al. (2010) estimated the EM responses using a method based on Fourier transform after removing line spectra of EM field variations at periods of Sq field variation and constituents of ocean tides. However, it has been shown that the estimated observed responses in the ME band still contain signatures of non-uniform and westward- propagating source field (Shimizu et al., 2011). Estimating EM responses free from these effects in the ME band is a challenge for the ocean bottom EM induction studies. In this study, we aim to have better estimates of EM responses in the ME band by selecting signals of the vertically propagating plane-wave source carefully. For this purpose, we employ the Sompi method (e.g., Kumazawa et al.,1990) that can identify existing wave elements (or namisos) in time series with a high frequency resolution. The Sompi method is applied for two horizontal magnetic field components at once (Asakawa eta al.,1988) to find complex frequency of namisos and then the amplitude and phase of three magnetic field and two horizontal electric field components are determined by assuming that they have common frequency of variation. Obtained line spectra for the EM fields are used to select suitable namisos for EM response estimation by a least square method. The criteria to select namisos are (1) selecting namisos in period ranges that are sufficiently away from those of Sq harmonics and ocean tides, (2) selecting namisos that do not show the westward propagating nature similar to the Sq field, and (3) selecting namisos with a quasi-linear polarization in the vertical plane. In this study, we applied criterion (1) at first. Then, the criteria (2) and (3) were applied to the namisos selected by criterion (1) separately. It was confirmed that responses estimated using (2) or (3) at periods shorter than 10^4 seconds are almost identical to those estimated by Baba et al., (2010) within the estimation error at periods shorter than 10^4 seconds. However, the abrupt change of EM responses at periods around 10^4 seconds in the previous work became smaller after applying criterion (2). On the other hand, the value of EM responses estimated using criterion (3) also reduced significantly at the shorter period of the ME band. Results of these two cases show that signatures of the Sq field variation in the EM responses are reduced at the shorter period part of the ME band up to $2x10^4$ seconds. However, we could not obtain statistically significant responses at longer periods because sufficient number of namisos was not available after the namiso selections. Using Sq field variation itself as the source field at the longer period in the ME band is another way to utilize EM field information to constrain the electrical conductivity of the mantle.

キーワード：地磁気静穏日日変化、電磁気応答関数
Keywords: Sq, Electromagnetic response
最近15年間の日本の地磁気全磁力の局所的変化と地殻活動の関連
Localized variations in the geomagnetic field and their relation with tectonic activities

*山崎 健一
*Ken'ichi Yamazaki

1. 京都大学防災研究所
1. Disaster Prevention Research Institute, Kyoto University

地磁気変化には、地殻に起源をもつ成分が含まれているといわれている。その成因は温度変化や応力変化による岩石磁化の変化であるので、地殻起源の地磁気変化を調べることは、地殻内部で進む物理現象を理解する助けになるはずである。しかし、地殻活動に起因する地磁気変化を調べることは一般に難しい。それは、地殻活動に起因する地磁気変化的大きさが高々数nT程度であり、小さいからである。地球深部から生じる時間スケールの長い変化および超高層から生じる時間スケールの短い変化は、いずれも地殻活動に起因する地磁気変化よりも圧倒的に大きい。地殻変動に起因する地磁気変化を調べるには、高い精度で他の変化成分を観測値から分離する必要がある。

地殻活動に起因する地磁気変化と他の要因から生じる地磁気変化から分離する際のよりどころとなるのは、空間スケールの違いである。地球深部から生じる時間スケールの長い変化および超高層から生じる時間スケールの短い変化は、いずれも数千キロあるいはそれ以上の大きな空間スケールを持つ。一方、地殻起源の変動は、ほとんどの場合、発生源の近傍に限定されると考えられている。そのため、空間スケールの大きな変動のみを何らかの方法で表現できれば、その表現と観測値の差に表れる変化は地殻起源であると期待できる。

本研究では、主成分分析を用いて地磁気の局所変化の抽出を試みた。これは、過去のデータについてこれまでに試みられている方法（たとえば Fujiwara et al. 2001; Yamazaki & Oshiman 2006; Yamazaki & Sakanaka 2011）と同じである。用いたデータは、国土地理院および気象庁によって観測・公開されている日本の17点の地磁気全磁力連続観測記録（確定値）であり、期間は1999年1月から2014年12月までである。具体的な方法は以下のようである。まず、観測点ごとに観測値の変化を算出し、主成分分析により、各時系列を、多数の点に共通する磁化変化のパターン（共通時間関数）と、観測点ごとに決まるそれらの重み（離散的空間関数）の積の和で表現する。もとの時間変化関数と離散的空間関数をすべてそのまま使えば、当然もとの時系列が完全に再現される。それに対し、対応する離散的空間関数の値が小さい時間変化関数を無視すれば、限られた観測点のみに現れる局所的変化が除去される。また、関数離散的空間関数を滑らかな連続関数で近似したもの（連続的空間関数）に置き換えることによって、空間スケールの大きさの変化をより大きくすることができる。こうして、一部の時間変化関数とそれに対応する連続的空間関数だけを用いて各観測点での地磁気変化を表現すれば、空間スケールの大きな変化、すなわち地球深部や超高層から生じる変化成分が記述されると期待できる。

得られる結果は、時間変化関数のうちのいくつを用いるか、あるいは連続空間関数としてどんな関数形を用いるかによって変化する。そこで、結果の信頼度、すなわちどの程度の精度で局所的変化のみが抽出されているかについての検討を行った。そのうえで、同時期の地殻活動との比較を行った。

現時点では、抽出された局所的変化と地殻活動との明確な関係は認められていない。

キーワード：地磁気、経年変化、局所的変化、地殻活動、主成分分析

©2017. Japan Geoscience Union. All Right Reserved. - SEM19-P11 -
Keywords: geomagnetic field, secular variation, localized anomalies, tectonic activities, principal component analysis