Fluorine and chlorine fractionation during magma ocean solidification: Implications for the origin and abundance of terrestrial halogens

*Hideharu Kuwahara¹, Nobuhiro Ogawa², Asuka Yamaguchi², Takanori Kagoshima², Yuji Sano², Tetsuo Irifune¹

¹Geodynamics Research Center, Ehime University, ²Atmosphere and Ocean Research Institute, The University of Tokyo

The isotopic compositions of terrestrial volatiles, such as hydrogen, nitrogen, and chlorine, are very similar to that of volatile-rich CI-CM type carbonaceous chondrites [e.g, 1, 2], suggesting that terrestrial volatile elements may have been mainly derived from these types of asteroids during the formation of the Earth. However, the abundance pattern of volatiles in the silicate Earth is different from carbonaceous chondrites [e.g., 1]. More specifically, super-chondritic H/N, Ar/Xe, and F/Cl ratios of the Earth have been reported [e.g., 1]. The simplest explanation for these observations is that terrestrial volatiles were delivered and fractionated during the main accretion phase. If this is the case, elucidating the fractional processes of volatiles in terrestrial planets is a key to understanding the origin of volatiles in terrestrial planets.

In this study, we focus on the super-chondritic F/Cl ratio of the Earth. The super-chondritic F/Cl ratio of the Earth indicates the selective loss of chlorine and the preferential retention of fluorine. Previous experimental studies have shown that fluorine and chlorine are moderately to highly lithophile under high pressure and high temperature conditions [3, 4, 5]. This indicates that fluorine and chlorine would have been partitioned into mantle during core-mantle separation. Thus, fluorine and chlorine fractionation would have occurred during magma ocean solidification and/or subsequent degassing processes. In order to test the former case, we experimentally investigate the solubility of fluorine and chlorine in mantle minerals at the transition zone and lower mantle conditions.

Starting materials were composed of high-purity oxides (SiO$_2$, Al$_2$O$_3$, CaO, MgO, FeO) and iron metal (Fe) with enstatite chondritic proportion [e.g., 6]. Fluorine and chlorine were added to the mixture as CaF$_2$ and FeCl$_2$, respectively. The starting materials were encapsulated into a graphite capsule. The experiments were performed at 18-25 GPa and 2123-2273 K using the multi-anvil press at Ehime University. The elemental compositions and phase assemblies of recovered samples were determined by raman spectroscopy, microfocused X-ray diffractometry, and electron microprobe analyzer. The abundances of fluorine and chlorine in minerals were determined by nano-scale secondary ion mass spectrometry at Atmosphere and Ocean Research Institute.

The preliminary experimental results show that the solubility of fluorine in MgSiO$_3$ majorite is approximately one order of magnitude higher than that of chlorine. Although we did not investigate the mineral-melt partition coefficients for fluorine and chlorine, the experimental results show that the crystallization of majorite in a deep magma ocean might have increased F/Cl ratios of the solid mantle. If the compatibility of fluorine and chlorine with other mantle minerals is similar to the case of majorite, the degassing of volatiles with high F/Cl ratios from the mantle after the escape of chlorine-rich primordial atmospheres might have yielded the current abundance pattern of terrestrial halogens. This hypothesis is consistent with the recent proposed scenario for explaining terrestrial super-chondritic Ar/Xe ratio [7].


Keywords: Halogen, Magma ocean
Volatile element transport within a closed system constrained by halogens and noble gases in mantle wedge peridotites

Halogen and noble gas systematics are powerful tracers of volatile recycling in subduction zones. The presence of noble gases and halogens with seawater and sedimentary pore-fluid signatures in exhumed mantle wedge peridotites and eclogites from the Sanbagawa-metamorphic belt, southwest Japan [1,2], and in seafloor and forearc serpentinites [3] along with seawater-like heavy noble gases (Ar, Kr, and Xe) in the convecting mantle [4] strongly suggest the subduction of sedimentary-pore-fluid-like noble gases and halogens.

In order to determine how volatiles are carried into the mantle wedge and how the subducted fluids modify halogen and noble gas compositions in the mantle, we analyzed halogen and noble gas compositions of mantle peridotites containing H$_2$O-rich fluid inclusions collected at volcanic fronts from two contrasting subduction zones (the Avacha volcano of Kamchatka arc and the Pinatubo volcano of Luzon arcs) and orogenic peridotites from a peridotite massif (the Horoman massif, Hokkaido, Japan) which represents an exhumed portion of the mantle wedge [5].

The halogen and noble gas signatures in the H$_2$O-rich fluids are similar to those of marine sedimentary pore fluids and forearc and seafloor serpentinites. This suggests that marine pore fluids in deep-sea sediments are carried by serpentine and supplied to the mantle wedge, preserving their original halogen and noble gas compositions.

On the other hand, the measured Cl/H$_2$O and $^{36}$Ar/H$_2$O in the peridotites are higher than those in sedimentary pore fluids and serpentine in oceanic plates. The halogen/noble gas/H$_2$O systematics are interpreted within a model where water is incorporated into serpentine in a closed system formed along fracture zones developed at the outer rise, where oceanic plates bend prior to entering subduction zones,
preserving \( \text{Cl}/\text{H}_2\text{O} \) and \(^{36}\text{Ar}/\text{H}_2\text{O} \) values of sedimentary pore fluids. Dehydration–hydration process within the oceanic lithospheric mantle maintains the closed system until the final stage of serpentine dehydration. The sedimentary pore fluid-like halogen and noble gas signatures in fluids released at the final stage of serpentine dehydration are preserved due to highly channelized flow, whereas the original \( \text{Cl}/\text{H}_2\text{O} \) and \(^{36}\text{Ar}/\text{H}_2\text{O} \) ratios are fractionated by the higher incompatibility of halogens and noble gases in hydrous minerals. The fluids are supplied to the mantle wedge beneath volcanic fronts and trapped as fluid inclusions in mantle wedge peridotites.

Some studies have argued that the sources of trace elements and water are decoupled in subduction zone magmas and that the major source of water is serpentine. Halogen and noble gas signatures found in the peridotites investigated here reveal that serpentine supplies a significant amount of water to the mantle wedge beneath volcanic fronts, and that this water is not strongly decoupled from these two groups of elements. The seawater-like noble gases in the convecting mantle [4] can be also explained by deeper subduction and/or involvement of the noble gas signatures observed in this study, to the convecting mantle.


キーワード：ハロゲン、希ガス、マントル、沈み込み、スラブ流体
Keywords: halogen, noble gas, mantle, subduction, slab fluids
古伊豆-小笠原-マリアナ弧（3000〜4000万年前）のメルト包有物中の揮発性成分の分析と分類

Systematics of volatile elements in melt inclusions from the proto-Izu-Bonin-Mariana arc (30-40 Ma)

*浜田 盛久1、Brandl Philipp2、牛久保 孝行3、清水 健二3、伊藤 元雄3、李 賀4、Savov Ivan5

1.国立研究開発法人海洋研究開発機構地球内部物質循環研究分野、2. GEOMARヘルムホルツ海洋研究センター（キール、ドイツ）、3.国立研究開発法人海洋研究開発機構高知コア研究所、4. 中国科学院広州地球化学研究所（中国）、5. リーズ大学地球・環境学部（英国）

1. Department of Solid Earth Geochemistry, Japan Agency for Marine-Earth Science and Technology, 2. GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 3. Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, 4. Guangzhou Institute of Geochemistry, Chinese Academy of Science, China, 5. School of Earth and Environment, The University of Leeds, UK

国際深海科学掘削計画（IODP）第351次航海「伊豆-小笠原-マリアナ弧の起源」は、古伊豆-小笠原-マリアナ（IBM）弧の残骸である九州-パラオ海嶺の西方約100㎞に位置する奄美三角海盆内のU1438地点を掘削した。掘削航海では、150mの火成岩の基盤岩（Unit 1、約5200万年前にプレートの沈み込みが始まったときに形成された）のコアと、沈み込み開始直後から堆積し続けた1461mの堆積物（Unit I, II, III及びIV）のコアが回収された。我々は、4000万年前から3000万年前にかけて堆積したUnit IIIに注目して、このUnit IIIから採取した300個以上のメルト包有物の主成分元素や揮発性元素（SとCl）を電子線プローブマイクロアナライザー（EPMA）を用いて分析し、古IBM弧の火成活動の時間発展を議論してきた（Brandl et al., 2017; Hamada et al., 査読中）。

これまでの研究を発展させるため、我々は、300個以上のメルト包有物から代表的な56個のメルト包有物を選出し、それらの中に溶存している揮発性成分（H2O, S, Cl, F）とP2O5を、海洋研究開発機構高知コア研究所の二次イオン質量分析計を用いて分析した。分析に際しては、Shimizu et al. (2017)の検量線と標準試料を用いた。分析結果の全般的な傾向としては、4000万年前から3000万年前にかけて、揮発性元素は増加する傾向にあり（図b-c）、それは液相農集元素であるK2OやP2O5の増加傾向とも整合的である。そのため、F/K2OやCl/K2Oといった揮発性成分/液相農集元素の値は、低K2O系列か中K2O系列かという火山岩の系統の違いや、Hamada et al. (査読中)が決定したメルト包有物の化学組成に基づくグループ（クラスター）分けに関わず、ほぼ一定である（図g, h）。IBM弧においては、低K2O系列のマグマは火山フロントの火山に由来し、中K2O系列のマグマは背弧側の火山に由来する。このことを念頭に置くと、メルト包有物の分析結果からは、(i)U1438地点に堆積した火砕物には火山フロント起源の火砕物と背弧起源の火砕物の両方があること、(ii)時間の経過に伴って、U1438地点周辺の火成活動が火山フロントの火成活動から背弧の火成活動へとシフトしていったことが推察される。

珪長質（デイサイト質から流紋岩質）メルト包有物（図g, hのクラスター6）の揮発性成分量は、他の苦鉄質メルト包有物の揮発性成分量とは異なっている。珪長質メルト包有物のF含有量（600-800 ppm）は、K2O量が増加しても増加しない（図g）。珪長質メルト包有物は主として約3000万年前（Unit IIIの最上位）に出現する。この時期、島弧のリフティングと背弧拡大が開始した約2500万年前の直前に相当する。この珪長質メルトは、結晶分化作用によって導かれた可能性も考えられるし、Ikeda and Yuasa (1989)が主張するように島弧リフティングや背弧拡大が開始するタイミングで生じる地殻の再溶融によって生じた可能性も考えられる。Cl濃度が異常に高いメルト包有物（図g, hのクラスター2）の起源に関しては、2つの可能性が考えられ
1つの可能性は、そのメルトがIBM弧の「ハロゲンに富む安山岩質メルト」(Straub and Layne, 2003)である。もう1つの可能性は、メルトによる塩水の取り込みである。しかしながら、Clに富む(クラスター2)メルト包有物はFに富んでいないことから、「ハロゲンに富む安山岩質メルト」(Straub and Layne, 2003)には相当せず、海底熱水系において塩水を取り込んでClに富んだ可能性が高い。

引用文献


キーワード：国際深海科学掘削計画、伊豆-小笠原-マリアナ弧、奄美三角海盆、メルト包有物、二次イオン質量分析計
Keywords: IODP, Izu-Bonin-Mariana arc, Amami Sankaku Basin, Melt inclusion, SIMS
Classification of melt inclusions by Hamada et al. (under review)

- Cluster 1 melt inclusions
  (Medium-K dolerite series rocks)

- Cluster 2 melt inclusions
  (Extremely high-C1 melt inclusions)

- Cluster 3 (low-K) melt inclusions
  (High-S melt inclusions)

- Cluster 4 (medium-K) melt inclusions
  (High-S melt inclusions)

- Cluster 5 melt inclusions
  (High-C1 melt inclusions)

- Cluster 6 melt inclusions
  (High-Ca-Mg calc-alkaline andesites)

- Cluster 7 melt inclusions
  (Dacitic-rhyolitic melt inclusions)
Fluid-fluxed melting of the mantle as the cause of intraplate magmatism over a stagnant slab: implications from Fukue Volcano Group, SW Japan

*Takeshi Kuritani1,2, Tetsuya Sakuyama2, Natsumi Kamada2, Tetsuya Yokoyama3, Mitsuhiro Nakagawa1

1. Graduate School of Science, Hokkaido University, 2. Faculty of Science, Osaka City University, 3. School of Science, Tokyo Institute of Technology

The Pacific Plate subducting from the Japan Trench has accumulated in the mantle transition zone beneath NE Asia, and intraplate magmatism has been active above the stagnant Pacific slab. Since the discovery of a remnant of the Pacific slab in the mantle transition zone (Fukao et al., 1992), slab stagnation and its relationship with intraplate magmatism has received growing attention. In particular, electric conductivity observations have suggested a remarkably hydrous mantle transition zone beneath NE China (e.g., Kelbert et al., 2009), and experimental, seismic, and numerical studies have indicated that dehydration of the stagnant slab plays a significant role in magma genesis (e.g., Ohtani and Zhao, 2009).

In this study, a petrological and geochemical study was carried out on basalts from a monogenetic volcano (Akashima Volcano) in the Fukue Volcano Group, SW Japan, to clarify the role of deep dehydration of the stagnant Pacific slab in the magmatism.

Akashima is a small volcanic island (0.52 km²), located southeast of Fukue Island, which is at the southwestern end of the Goto Islands. The eruption products (46.8–51.0 wt.% SiO₂) consist of a low-Si group (< 48.4 wt.%) and a high-Si group (> 48.8 wt.%), and the former predates the latter. The modal abundance of phenocrysts is typically ~5% olivine for the low-Si group. Some samples additionally contain small amounts (< 0.5%) of plagioclase phenocrysts. The products of the high-Si group typically contain ~5% olivine and ~10% plagioclase phenocrysts. The low-Si samples have higher TiO₂ and rare-earth element concentrations, and higher ⁸⁷Sr/⁸⁶Sr ratios and lower ¹⁴³Nd/¹⁴⁴Nd and ²⁰⁶Pb/²⁰⁴Pb ratios than the high-Si samples.

The low-Si samples have distinct incompatible element concentrations and Sr, Nd, and Pb isotopic compositions from those of the high-Si samples. This observation suggests that the low-Si and high-Si magmas were not produced by a series of magmatic processes. The most magnesian samples in each group are primitive (> 8 wt.% MgO), and therefore, both the low-Si and high-Si magmas originated from different source mantle materials. The H₂O contents of the primary magmas were estimated as ~2 wt.% for both the low-Si and high-Si groups. Analyses using multicomponent thermodynamics suggested that the low-Si and high-Si primary magmas were generated at ~2.5 GPa and 1345°C and at ~1.8 GPa and 1285°C, respectively. The melting pressure of ~2.5 GPa for the low-Si magma suggests its generation in the asthenospheric mantle. On the other hand, the melting pressure of ~1.8 GPa for the high-Si magma coincides well with the depth of the asthenosphere–lithosphere boundary at 60–65 km (~1.8 GPa) beneath Fukue Island (Zhu et al., 2006). Therefore, the high-Si magma is considered to have been generated by interaction of the low-Si magma with the SCLM.

The H₂O/Ce ratios of the primary low-Si magma of ~650 is higher than the range of 100–250 for normal
MORB (Michael, 1995), and is closer to the range found in subduction zone magmas (800–10000; Ruscitto et al., 2012). This observation suggests that the source mantle of the Akashima magma is significantly hydrous compared with the normal asthenospheric mantle. The mantle potential temperature for the low-Si Akashima magma, calculated as ~1300°C, is within the range for subduction zone magmas (1150–1350°C; Lee et al., 2009). Therefore, the Akashima magma may have been generated primarily by melting of the ambient asthenospheric mantle at ~2.5 GPa, triggered by an influx of fluids originating from dehydration of the stagnant Pacific slab, similar to the case of the Chugaryong Volcano in Korea (Sakuyama et al., 2014). The water storage capacity of the upper mantle is significantly lower than that of the underlying mantle transition zone. Therefore, the release of fluids from the mantle transition zone to the upper mantle may suggest that the transition zone beneath Akashima was locally saturated with water.

キーワード：プレート内マグマ活動、マントル遷移層、水、停滞スラブ
Keywords: Intraplate magmatism, Mantle transition zone, Water, Stagnant slab
Temporal variation of He isotopes in fumarolic gases at Mt. Hakone, Japan

*Takanori Kagoshima¹, Yuji Sano¹, Naoto Takahata¹, Takeshi Ohba²

1. 東京大学大気海洋研究所, 2. 東海大学理学部化学科
1. Atmosphere and Ocean Research Institute, the University of Tokyo, 2. Department of Chemistry, School of Science, Tokai University

Volcanic and seismic activity was intensified at Mt. Hakone in 2015. Earthquake swarm activity was observed in the end of April 2015, which was followed by small eruptions at the Owakudani geothermal area from June to July. Eruptions and seismic activity had been frequently observed till about October 2015, and the activity became calm in the end of the year. From May 2015, we have been investigating $^3\text{He}/^4\text{He}$ ratios in fumarolic gases collected at two sites in the Owakudani geothermal area, located at Mt. Kamiyama which is one of the central cones of Hakone caldera. One fumarolic gas (T) is located near the parking of the geothermal area, and another fumarolic gas (S) is located on the north flank of Mt. Kamiyama, 500m far from the fumarole T. Helium isotopes in collected gases were measured with Helix-SFT or VG5400 mass spectrometer housed at Atmosphere and Ocean Research Institute. $^3\text{He}/^4\text{He}$ ratios in samples were calibrated against atmospheric value ($R_a$: $^3\text{He}/^4\text{He} = 1.38 \times 10^{-6}$). Since He isotopes are useful magmatic fluid tracers, temporal variations of $^3\text{He}/^4\text{He}$ ratios may provide information about volcanic activity. $^3\text{He}/^4\text{He}$ ratios at two fumaroles slightly increased until August 2015, also after the small eruptions from June to July. The corrected $^3\text{He}/^4\text{He}$ ratio at the fumarole T increased from 6.53 $R_a$ (June) to 6.72 $R_a$ (August), while that of the fumarole S increased from 6.57 $R_a$ (May) to 6.76 $R_a$ (August) in 2015. After that, the ratios at two fumaroles started to decrease. Corrected $^3\text{He}/^4\text{He}$ ratios at fumarole T and S decreased to 6.37 $R_a$ (October 2016) and 6.45 $R_a$ (September 2016), respectively. These variations may reflect hydro-volcanic activity at Mt. Hakone. At Mt. Ontake, the magmatic high He isotopic ratio was supplied into geothermal systems associated with excess water vapor which could have provided the driving force for the 2014 eruption (Sano et al., 2015). There is a possibility that elevation of He isotopic ratios may be related to vapor accumulation and potential activation of Mt. Hakone, while decrease in the ratios may reflect inactivation. We will also present N and Ar isotope data, and discuss gas geochemistry along the volcanic activity of Mt. Hakone.

Keywords: Mt. Hakone, Volcanic gas, Helium isotope
Geochemistry of olivine melt inclusions in Pitcairn Island basalts: A multiple-instrument approach

*小澤 恭弘1、羽生 毅2、岩森 光2,1、浜田 盛久2、牛久保 孝行2、清水 健二2、伊藤 元雄2、木村 純一2、常 青2、石川 剛志2
*Takahiro Ozawa1, Takeshi Hanyu2, Hikaru Iwamori2,1, Morihisa Hamada2, Takayuki Ushikubo2, Kenji Shimizu2, Motoo Ito2, Jun-Ichi Kimura2, Qing Chang2, Tsuyoshi Ishikawa2

1. 東京工業大学、2. 国立研究開発法人海洋開発研究機構
1. Tokyo Institute of Technology, 2. Japan Agency for Marine-Earth Science and Technology

Ocean island basalts (OIBs) provide essential information on evolution of the Earth’s mantle, because OIBs are sourced from plumes from the deep mantle that include recycling materials. OIBs at the Pitcairn Island show distinct geochemical characteristics from other OIBs with their enriched isotopic signatures, so called enriched mantle 1 (EM1) component. This particular feature could have been caused by the involvement of recycled materials including chemically differentiated oceanic plate slab or delaminated continental lithosphere and lower crust (e.g., Eisele et al., 2002). In order to understand behavior of volatile elements during mantle recycling, we analyzed H2O, CO2, F, S, and Cl in the olivine-hosted melt inclusions in the Pitcairn OIBs using a secondary ion mass spectrometry (SIMS). Major and trace elements, and Pb isotope compositions were also determined on the same melt inclusions with an electron probe micro analyzer (EPMA) and a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS). Most of the olivine-hosted melt inclusions contain microcrystals due to slow cooling after emplacement of the host lavas. In the preliminary study, we found that measured element concentrations were blurred by the microcrystals. Therefore, we homogenized the melt inclusions by a heating and quenching method. Homogenization experiment was performed in a CO2 + H2 atmosphere using an electric furnace. For the first step, liquidus temperature of the melt inclusions was explored by altering the furnace temperature at every 25 ℃ between 1100 ℃ and 1350 ℃. We found that the liquidus temperature was between 1150 ℃ and 1175 ℃. All the olivines were then heated just above the liquidus temperature at 1150 ℃ or 1175 ℃ for 10 minutes and quenched. Previous studies showed that H2O may be diffused out from a melt inclusion through host olivine during homogenization. In order to assess the effect on H2O diffusion, we also heated naturally homogeneous melt inclusions in a pyroclastic rock and compared H2O concentrations before and after heating. In this presentation, effects of homogenization on volatile compositions will be discussed. After corrections for the effects of post-entrapment crystallization, concentrations of the volatile elements together with the major and trace elements, and Pb isotopes in the melt inclusions are used to explore volatile contents in the source mantle of the Pitcairn OIBs.
Volatile cycle in the mantle has been poorly constrained because of limited number of studies thus far on volatile compositions in the mantle-derived ocean island basalts. We performed in-situ geochemical analyses on the olivine-hosted melt inclusions (MI) from Raivavae Island in the South Pacific. MIs were homogenized on the heating stage before chemical analyses. Compositions of major elements, trace elements, volatile elements, and Pb isotopes were determined by the combination of analytical techniques using EPMA, LA-ICP-MS, and SIMS. Carbon dioxide is distributed in both glasses and shrinkage bubbles in MI. We measured CO$_2$ density in bubbles using micro Raman spectrometry and determined the volume ratio between bubbles and MI applying micro X-ray CT technique to calculate CO$_2$ in bubbles, which is added to CO$_2$ in glasses measured with SIMS to determine the total CO$_2$ in MI. The basalts from Raivavae are classified into two groups in terms of Pb isotopes. Most MI in less radiogenic-Pb basalts have similar Pb isotopic compositions to host basalts. MI in radiogenic-Pb basalts generally exhibit radiogenic (HIMU) character, but they show larger isotopic variation than the host basalts. It is notable that small number of MI have different Pb isotope ratios from host basalts, suggesting mingling of radiogenic melts and less radiogenic melts during olivine crystallization. Despite some exceptions, MI with radiogenic Pb isotopes are characterized by lower SiO$_2$ and higher CaO, La/Yb, and Nd/Hf than MI with less radiogenic Pb. These facts suggest that the radiogenic-Pb (HIMU) melts were formed by low-degree partial melting of carbonated source. MI with radiogenic Pb clearly show elevated Cl/Nb and F/Nd relative to MI with less radiogenic Pb. Enrichment of Cl and F in radiogenic-Pb melts implies that these elements have been transported into the mantle via subduction of hydrothermally altered oceanic crusts. The correlation of H$_2$O/Ce and CO$_2$/Nb with Pb isotopes is somewhat blurred, probably owing to degassing and diffusive loss of CO$_2$ and H$_2$O. However, MI with the most radiogenic Pb have the lowest H$_2$O/Ce and the highest CO$_2$/Nb, which may also reflect the feature of the basalt source.

Keywords: Volatile, Ocean island basalts, Melt inclusion
Determination of water content of natural talc: application to a recipe for hydrogen manometry

*Shigeru Yamashita

1. Institute for Planetary Materials, Okayama University

Hydrogen manometry is a conventional yet powerful, absolute technique for the determinations of water contents of rocks and minerals. The concentration of water in a stoichiometric pure talc was determined by the hydrogen manometry technique so that accuracy of this technique was assessed. The talc sample was from Haicheng mine, China. Bulk chemical composition of the talc sample is \((\text{Mg}_{2.930} \text{Fe}_{0.001}) (\text{Si}_{4.003} \text{Al}_{0.002})\) on the anhydrous 11 oxygen basis (Matsumura Sangyo Co., Ltd., pers. comm.), which is nearly identical to that of the ideal talc \(\text{Mg}_3\text{Si}_4\text{O}_{10}(\text{OH})_2\). Powder X-ray diffraction also shows that the sample consists thoroughly of talc, free from any possible impurity.

About 20 mg of the <38μm size fraction of the talc sample was loaded in a Pt crucible and sealed in a quartz-glass reaction vessel. The reaction vessel was then connected to a high vacuum line, and the Pt crucible was heated to 1000 °C at the rate of ~1 °C/sec using an induction furnace to let the talc sample completely degassed. Degassing was monitored with a Pirani gauge. Degassing from the talc started at around 500 °C and ended by 800 °C. During the degassing, the released gas was continuously sublimated using liquid nitrogen, so that the gas pressure buildup in the vacuum line was kept not to exceed 10 Pa. The \(\text{H}_2\text{O}\) was cryogenically purified using an acetone - solid \(\text{CO}_2\) mixture slurry, and then converted to \(\text{H}_2\) gas in a deleted uranium furnace at 700 °C. The \(\text{H}_2\) gas was transferred into a calibrated volume with a Toepler pump, and the pressure of the \(\text{H}_2\) gas was determined. Complete thermal decomposition of the talc to enstatite + amorphous silica was confirmed by X-ray diffraction of the residue after degassing. Repeated measurements of the talc sample yielded \(\text{H}_2\text{O}\) content of 4.71 ±0.05 wt%. This value agrees with 4.75 wt% \(\text{H}_2\text{O}\) of the ideal talc \(\text{Mg}_3\text{Si}_4\text{O}_{10}(\text{OH})_2\) within analytical uncertainty.

The gas pressure buildup in the vacuum line could reach an order of kilopascal (one hundred times more than that in the present study) if the released \(\text{H}_2\text{O}\) gas was not continuously sublimed during the degassing process. Clog et al. (2012; Geochim. Cosmochim. Acta 83, 125-137) showed that at high temperatures under such high \(\text{H}_2\text{O}\) gas pressure, a large fraction of the \(\text{H}_2\text{O}\) gas (up to 20%) is retained in the coexisting Pt alloy, which results in a poor yield of the gas in the hydrogen manometry. Diffusion flux of \(\text{H}_2\text{O}\) (H) into Pt metal is proportional to square root of the pressure of surrounding \(\text{H}_2\text{O}\) gas. Results of the present study suggest that holding \(\text{H}_2\text{O}\) gas pressure at less than 10 Pa is a key to have accurate data from the hydrogen manometry.