Quantitative proton-induced X-ray analyses of trace elements in individual fluid inclusions from hydrothermal quartz crystal

\# Masanori Kurosawa[1]
[1] Inst. Geosci., Univ. Tsukuba

Trace-element contents in single fluid-inclusion analogues with known composition and regular shape were analyzed by prpton-induced X-ray emission (PIXE), to evaluate an accuracy and detection limits for the non-destructive analyses of single fluid inclusions. Using the present developed quantification, the elements with concentration of 10 to 1000 ppm were determined within a relative error of 7% (mean). For the determinations of natural fluid inclusions in quartz, the total analytical error was estimated at approximately 14% relative (mean) by considering uncertainty for microscopic measurements of inclusion depths. The detection limits have been achieved in the range from 4 to 46 ppm for elements of mass numbers 25-50 at a typical analytical condition.

By the present PIXE method, trace elements in single fluid inclusions from a hydrothermal quartz crystal were also determined. The concentrations varied largely for each inclusion and were of $0.2-9 \mathrm{wt}$. \% for Ca and $\mathrm{Fe}, 300-8000 \mathrm{ppm}$ for Mn and $\mathrm{Zn}, 40-3000 \mathrm{ppm}$ for $\mathrm{Cu}, 100-4000 \mathrm{ppm}$ for $\mathrm{Br}, \mathrm{Rb}, \mathrm{Sr}$, and Pb , and less than 100 ppm for Ge .

