Estimation of atmospheric oxygen concentrations based on paleosols: not drastic but gradual rise of oxygen

\# Takashi Murakami[1]; Bulusu Sreenivas[2]; Suburata Das Sharma[3]; Hirokazu Sugimori[4]
[1] Deprt. of Earth Planet. Sci.., Univ. of Tokyo; [2] National Geophys. Res. Inst.; [3] National Geophys. Res. Ins.; [4] EPS, Sci., Univ. of Tokyo
'The study of Precambrian oxygen evolution has matured into a serious science (Canfield, 2005).' The first oxygen rise occurred sometime between 2.6 and 2.0 Ga . The most popular model of this rise is characterized by a drastic increase by 3 orders of magnitude at around 2.3 Ga . This model requires the partial pressure of atmospheric carbon dioxide (PCO2) to calculate the partial pressure of atmospheric oxygen (PO 2). We propose a new method that applies $\mathrm{Fe} 2+$ oxidation kinetics to calculate PO 2 , which is independent of PCO 2 . $\mathrm{Fe} 2+$ oxidation kinetics, $-\mathrm{d}[\mathrm{Fe} 2+] / \mathrm{dt}=\mathrm{k}[\mathrm{Fe} 2+][\mathrm{OH}-] 2(\mathrm{PO} 2)(\mathrm{x})$, was finally transformed to f / fA $=(\mathrm{PO} 2) \mathrm{A}(\mathrm{x}) /(\mathrm{PO} 2)(\mathrm{x})$ where f is the ratio of the concentration of $\mathrm{Fe} 2+$ dissolved from primary minerals to that of $\mathrm{Fe} 2+$ flowing out of paleosol, A the reference paleosol, and x the variable. The above equation was solved numerically assuming several constraints, for instance, more than $10(-6)$ atm before 2.45 Ga as revealed by S isotope study. The calculations indicated that the atmospheric oxygen increased rather gradually from about $10(-8)-10(-6)$ to $10(-4)-10(-2)$ atm between 2.6 and 2.0 Ga . The drastic rise by 3 orders of magnitude at around 2.3 Ga could occur only if the f value decreased very rapidly at around 2.3 Ga , which was not possible as revealed by the geochemistries of Fe and Mn in paleosols.

