Effects of guide field on quick magnetic reconnection triggering

\# Kentaro Tanaka[1]; Iku Shinohara[2]; Masaki Fujimoto[3]

[1] Earth and Planetary Sci., TITECH; [2] JAXA/ISAS; [3] DEPS, TITECH

Effects of guide field on quick magnetic reconnection triggering (QMRT) in an ion-scale current sheet with the aid of the lower-hybrid drift instability (LHDI) activity have been investigated by two-dimensional (2-D) full-particle simulations. Firstly, tau $=$ omega_pe/Omega_e $=1$ (omega_pe: the electron plasma frequency, Omega_e: the electron cyclotron frequency) and the ion-to-electron mass ratio of $\mathrm{M}=400$ are set. When $\mathrm{B} 0 \mathrm{y}=0$ (B0y: the guide field), the current concentration at the center of the current sheet is attained in reaction to the LHDI activity for $D=0.5{ }^{\sim} 0.75$ (D: the initial half thickness of the current sheet normalized by the ion inertial length), and its time scale is as quick as the LHDI time scale (Type-I). At the current sheet center the meandering-accelerated electrons are produced by the inductive electric field due to the LHDI activity. At $\mathrm{D}=1$, the electron temperature anisotropy Te,perp/Te,para $=1.5$ is produced as quick as the LHDI time scale. In this case the bifurcated current layer structure is formed at the flank of the current sheet center (Type-II). When $\mathrm{B} 0 \mathrm{y}=0.25$, the $\mathrm{D}=0.5$ case shows the Type-I current sheet structure and the electrons at the center are accelerated with the beam-like distribution. In contrast, at $\mathrm{D}=0.75$ with $B 0 y=0.25$, the bifurcated current layer is formed at the flank of the current sheet, however no remarkable growth of the electron temperature anisotropy is attained in the LHDI time scale (Type-S). This case is too thick to be subject to QMRT. When setting the stronger guide field of $\mathrm{B} 0 \mathrm{y}=0.75$, the $\mathrm{D}=0.5$ case has been found to be Type-S. Recovery of Type-I in $\mathrm{B} 0 \mathrm{y}=0.75$ is found at $\mathrm{D}=0.35$.

Next, tau has been set to tau $=4$ in order to see tau dependence on QMRT. When $\mathrm{B} 0 \mathrm{y}=0, \mathrm{D}=0.5$ shows the Type-I aspects, whereas $\mathrm{D}=0.75$ shows the Type-II aspects. This implies that the transition from Type-I to Type-II shifts to smaller D. Meanwhile, two cases of $\mathrm{D}=0.5$ with $\mathrm{B} 0 \mathrm{y}=0.25$ and $\mathrm{D} /=0.35$ with $\mathrm{B} 0 \mathrm{y}=0.75$ show the aspects of Type-S. This implies that the transition from Type-I to Type-S also shifts to smaller D. We have concluded that the guide field gives the larger impact on QMRT by increasing tau.

Lastly, one more simulation has been performed by setting $\mathrm{D}=0.5$, tau $=4$ and $\mathrm{B} 0 \mathrm{y}=0$ with the physically real mass ratio in order to see the tau effect on QMRT in the real mass situation. The detailed results will be discussed in the meeting.

