Migrating Japanese subduction zone

\# Hitoshi Kawakatsu[1]; Shingo Watada[2]

[1] ERI, Univ of Tokyo; [2] Earthquake Research Insititute, U. of Tokyo

We have extended our receiver function (RF) analysis to map the seismic discontinuity structure beneath the Japanese islands using Hi-net data (Kawakatsu and Watada, last year). From the conventional RF analysis, the 660 km discontinuity had been shown to be deflected downwards as much as $\sim 40 \mathrm{~km}$ with a width of approximately 500 km where the Pacific plate appears to stagnate in recent tomographic models; the narrow depression of the 660 km discontinuity beneath southwest Japan appears to be consistent neither with a simple penetrating slab, nor with a flat stagnating slab near the boundary (Bina and Kawakatsu, 2005@Erice). A more complex slab morphology in the transition zone may be required to explain the observation.

Encouraged by the continuous image obtained by the simple RF analysis, we have further applied a Kirchhoff type migration to the same data set. As the full migration does not give reasonable image, we have restricted to recover the wavefield subhorizontal (conversion plane within 15 degrees from horizontal) and sub-parallel to the slab dip (within 18 degrees from the local slab dip estimated from the slab contour of Gudmundsson \& Sambridge (1998)). Some of the features seen this image are: (1) weak slab signature ${ }^{\sim} 100-150 \mathrm{~km}$ depth, which may correspond to the location of basalt to eclogite transition in the subducting oceanic crust, (2) $\sim 10 \mathrm{~km}$ elevation of the 660 km discontinuity at the ocean side of the Japanese subduction zone, which appear to coincide with the slow P-wave velocity anomaly in a recent tomographic model (Obayashi and Fukao, 2001), (3) though highly speculative, a possible deep ($\sim 800 \mathrm{~km}$) structure. As the present image is obtained in a low frequency range $(0.1-0.5 \mathrm{~Hz}$), we plan to apply the same migration to higher frequency range data to obtain finer images. Velocity analyses will be also attempted.

