F118-004 Room: 201A Time: May 21 9:45-10:00

Formation of high-ozone regions downstream of the Asian continent in winter and spring

Yutaka Kondo[1]; Yuzo Miyazaki[2]; Kenji Nakamura[1]; Nobuyuki Takegawa[3]; Makoto Koike[4]; Kazuyuki Kita[5]; Tomoko Shirai[6]

[1] RCAST, Univ. of Tokyo; [2] RCAST, U.Tokyo; [3] RCAST, Univ of Tokyo; [4] Earth and Planetary Sci., Univ. of Tokyo; [5] Ibaraki Univ.; [6] NIES

http://noysun1.atmos.rcast.u-tokyo.ac.jp

The anthropogenic impact on the distributions of ozone (O₃) over the western Pacific from winter to spring is investigated using a three-dimensional chemistry-transport model (GEOS-CHEM). The GEOS-CHEM results for January and April-May 2002 are first compared with data obtained from the PEACE aircraft missions flown for the same periods to validate the model results. The concentrations of O₃ and its precursors calculated by GEOS-CHEM generally agree well with those observed at 0-12 km. The O_3 distributions calculated by the GEOS-CHEM are then interpreted in terms of O_3 production rates and transport over East Asia into the western Pacific regions. The impact of the ozone precursors, especially NO_x , emitted from East Asian countries (China, Korea, and Japan) are found over the western Pacific, which can be characterized by regions of high boundary layer O₃ levels. The locations of the high- O_3 regions are controlled mainly by the geographical distribution of the sources of NO_x , dominating wind fields, and UV radiation. In January, the strong northwesterlies, combined with low OH, efficiently transport NO_x to 160°E at 30° N. As a result, about 5-10 parts per billion by volume (ppbv) of O_3 is produced during transport over a distance of about 3000 km within 5-6 days. This leads to a high- O_3 (~40 ppbv) belt located at 20° - 35° N, south of the Japan archipelago, extending further downstream to about 5000 km east of the Asian continent (120°-170°E). In April, southwesterly winds dominated due to the development of the anticyclone over the western Pacific. Along this flow, O_3 continues to be produced by NO_T emitted from China, Korea, and Japan during the northeastward transport over distances of about 3000 km. This results in the formation of a high- O_3 (higher than 50 ppbv) region extending over 30° - 50° N within about 2000 km along the coastal areas of the three countries. The GEOS-CHEM model was also used to estimate the impacts of anthropogenic NO_x emissions from the Asian continent on O_3 in the free troposphere over the entire Pacific Ocean.