Determination of triple oxygen isotopic compositions of atmospheric nitrous oxide by using continuous-flow isotope ratio MS

Daisuke Komatsu[1]; satoru ohkubo[1]; Toyoho Ishimura[2]; Fumiko Nakagawa[3]; Urumu Tsunogai[3]

[1] Earth and Planetary Sci., Hokkaido Univ.; [2] Natural History Sciences, Hokkaido University; [3] Earth & Planetary Sci., Hokkaido Univ.

The triple oxygen isotopic compositions (${}^{18}\text{O}/{}^{16}\text{O}$ and ${}^{17}\text{O}/{}^{16}\text{O}$) of nitrous oxide (N₂O) in atmosphere can be a useful tracer to clarify their sources and N cycles in atmosphere. The triple oxygen isotopic compositions of N₂O have been usually determined by using conventional IRMS system using O_2 molecule converted from N_2O through multiple reaction/purification steps. The traditional methods, however, required at least 1-100 10^3 nmol quantities of N₂O so that applications of the methods to various environmental N_2O samples were difficult. Thus, we developed a rapid and sensitive analytical system to determine the triple oxygen isotopic compositions of N2O in nmol quantities using continuous-flow IRMS (CF-IRMS) without the cumbersome and time-consuming pretreatments. We cannot determine ${}^{17}O/{}^{16}O$ ratio of N₂O directly by measuring the masses 44, 45, and 46 of N₂O introduced to IRMS, because the measured output of mass 45 from IRMS consists of ${}^{14}N^{15}N^{16}O$, ${}^{15}N^{14}N^{16}O$, and $^{14}N^{14}N^{17}O$. Thus, addition to the N₂O isotopic analysis at the masses 44, 45, and 46, the $^{15}N/^{14}N$ ratio is determined separately for the same sample N₂O. To attain this purpose, two instrumental approaches were done. In the first system, the N₂⁺ fragment ion beams of N₂O at masses 28 and 29 were used to determine the ¹⁵N /¹⁴N ratio of N₂O. While the analytical precisions better than 0.5 per mil for 20 nmol N₂O injections and better than 1.0 per mil for 7 nmol N₂O injections were obtained for 15N/14N ratio, we found that the accuracy strongly depended on the quantities introduced. In the second system, the N_2 molecules, converted from N_2O using an on line Cu reduction furnace (720 degree) was used to determine the ${}^{15}N/{}^{14}N$ ratio of N_2O . The analytical precisions better than 0.1 per mil for 5 nmol N₂O injections and better than 0.4 per mil for 1 nmol N₂O injections were obtained for ${}^{15}N/{}^{14}N$ ratio with stable accuracy irrespective of the quantities introduced. Thus, we introduced N₂ and N₂O to CF-IRMS repeatedly by using an automatic multi-injection system to improve analytical precision statistically, so that the analytical precisions in the ¹⁷O/¹⁶O ratio of N₂O and nitrate better than 1.0 per mil for 100 nmol injections and better than 4.0 per mil for 20 nmol injections were obtained. Besides to N_2O , we can also apply the method to determine the triple oxygen isotopic composition of nitrate based on the isotopic analysis of N₂O quantitatively converted from nitrate through the simple reactions using spongy cadmium and sodium azide in an acetic acid buffer. We present the triple oxygen isotopic compositions of N₂O and nitrate in atmosphere determined by using this system.