Estimation of carbon cycle of atmospheric carbon dioxide in forest by stable isotopic ratio

Kota Ito[1]; Jun Moriizumi[1]; Hiromi Yamazawa[1]; Takao Iida[1]

http://www.ees.nagoya-u.ac.jp/~env_eng/

1. Introduction
Forest is an important reservoir of organic carbon where atmospheric CO\textsubscript{2} is exchanged through photosynthesis and respiration processes. Thus, its ability of absorption of atmospheric CO\textsubscript{2} should be decided by balance of activities of these two processes. Precise quantitative evaluation of the cycle of atmospheric CO\textsubscript{2} is required to make reliable numerical targets for actions against the global warming. In this study a methodology of evaluation of carbon cycle in a forest has been discussed, which adopts carbon isotopic analysis.

2. Observation
Mixing ratios and stable carbon isotopic ratios of CO\textsubscript{2} sampled in forest canopy layers and flux densities of soil respiration CO\textsubscript{2} were measured in Japanese larch forest in Inabu, Toyota, Aichi Pref. (35.2N, 137.4E, 1010 m a.s.l., 23 m mean tree height) from May 2004 to Nov. 2006, and an intensive measurement were undergone in a deciduous broadleaf tree forest in Takayama, Gifu Pref. (36.13N, 137.42E, 1420 m a.s.l., 14 m mean tree height) on 2 Aug. 2006. The samples of forest air were collected at 6 heights in Inabu site and at 12 heights at Takayama site. Soil respiration CO\textsubscript{2} samples were collected by a closed chamber over the ground surface. Mixing ratios of CO\textsubscript{2} were measured with a NDIR gas analyzer (LI-820, Li-Cor), and stable carbon isotopic ratios were with an isotopic ratio mass spectrometer (Finnigan MAT252, Thermo Electron).

3. Results and Discussions
Seasonal variations in vertical profiles of CO\textsubscript{2} mixing ratio and stable isotopic ratio has been observed at Inabu site. Especially characteristic profiles were obtained in summer, which has high mixing ratio near the ground in the morning with the largest range of diurnal variation. This would be attributed to soil respiration and implies increasing of CO\textsubscript{2} production by activated decomposition of organic matter due to high temperatures. Decreasing of stable carbon isotopic ratios with increasing of CO\textsubscript{2} mixing ratios were observed. This result is consistent with delta-13C of soil respiration CO\textsubscript{2} lower than that of atmospheric CO\textsubscript{2}. At upper heights in the forest, lower mixing ratios were observed in summer, but their range of seasonal variation was smaller than at the lower height. Increasing soil respiration CO\textsubscript{2} and rapid exchange with air over the forest canopy would be almost balanced by the decreasing CO\textsubscript{2} due to photosynthesis.

In Takayama site mixing ratios at most of all measured heights decreased from 10 to 14 o’clock. As oppose to it, their delta-13C values increased. A minima of mixing ratios and maxima of delta-13C were observed at heights of 14-16m, suggesting active photosynthesis at these height because it results from higher delta-13C of CO\textsubscript{2} due to isotopic fractionation of photosynthesis. As is the case in Inabu site, CO\textsubscript{2} at the lowest measured height (0.5 m) showed high mixing ratios and low delta-13C. At heights of 1.0 m and 1.5 m in understory layer, which are just above the lowerst height, temporal decrease of mixing ratios and increase of delta-13C were obtained as occured at the upper heights, suggesting activity of photosynthesis by the understory.

By using these results of the observation, a methodology of quantitative evaluation of CO\textsubscript{2} transport in a forest canopy layer with mass balance of 12CO\textsubscript{2} and 13CO\textsubscript{2} has been discussed, and its precision and requirements on observation for its application will be reported.