F118-024 Room: 201A Time: May 21 16:45-17:00

An analysis of CO2 concentration variation using inverted surface fluxes

Yosuke Niwa[1]; Ryoichi Imasu[1]; Masaki Satoh[1]; Hidekazu Matsueda[2]; Toshinobu Machida[3]; Kou Shimoyama[4]; Shamil Maksyutov[3]

[1] CCSR, Univ. of Tokyo; [2] GRD/MRI; [3] NIES; [4] ILTS

 CO_2 is the main cause of the global warming and there are several methods to study for the circulation of CO_2 . The inverse method is one of these methods. It uses an atmospheric transport model to estimate CO_2 surface fluxes from atmospheric measurements. Recently, many atmospheric measurements of CO_2 are newly available and these are expected to be used for CO_2 inversion. Especially, measurements at upper troposphere by JAL airplane are remarkably extended and expected to impact on CO_2 inversion.

This study is intended to evaluate whether our transport model has an enough performance to simulate the variation of CO_2 concentration at upper troposphere and be able to include these CO_2 concentration measurements into the inversion analysis. Furthermore we analyze the seasonal variation of CO_2 concentration at each latitude in the upper troposphere and try to understand what process effects on these variations.

First we make CO₂ surface fluxes by the inverse method and then perform a CO₂ transport experiment using these inverted fluxes and the tracer transport model based on NICAM.