Assessment of uncertainty in CH4 concentrations retrieved from thermal infrared spectra of GOSAT/TANSO-FTS sensor

Naoko Saitoh[1]; Ryoichi Imasu[2]

[1] CCSR, Univ. Tokyo; [2] CCSR, Univ. of Tokyo

CH₄ is one of major greenhouse gases as well as CO₂ in the atmosphere. For global observation of CO₂ and CH₄ with high accuracy/precision, the Greenhouse gases Observing Satellite (GOSAT) has been developed by National Institute for Environmental Studies (NIES), Ministry of the Environment, and Japan Aerospace Exploration Agency (JAXA) and planed to be lunched in 2008. This study assesses uncertainty in CH₄ profiles retrieved from thermal infrared spectra (band 4)of the GOSAT/TANSO-FTS sensor. We focused on the spectral region centered at 7.7 micron (1200-1400 cm⁻¹). The spectral region contains absorption bands of H₂O and N₂O as well as that of CH₄. The effects of uncertainties in H₂O and N₂O concentrations on retrieved CH₄ concentrations were examined in this study. The spectral resolution in band 4 is about 0.2 cm⁻¹ and the signal to noise ratio (S/N) is designed to be around 300 at a brightness temperature of 280 K; these values were used to compute pseudo-spectra of TANSO-FTS. Based on the maximum *a posteriori* (MAP) method for CH₄ retrieval, 10% biases in H₂O and N₂O concentrations produced biases of 3% and 2.5% in retrieved CH₄ concentrations, respectively, and +/-0.5% random scatters led to 0.4% and 0.3% CH₄ random errors, respectively. However, selecting channels appropriate for CH₄ retrieval on the basis of information content of CH₄ computed following the Shannon's information theory [*Shannon and Weaver*, 1949] could reduce both bias and random errors in retrieved CH₄ concentrations to be one fifth of the errors in the case of all the channels used.