Seasonal variation of formation, loss, and transport of HNO3 and particulate nitrate over the Tokyo Metropolitan Area

Yu Morino[1]; Yutaka Kondo[2]; Toshimasa Ohara[3]; Seiji Sugata[3]; Nobuyuki Takegawa[4]; Masato Fukuda[5]

[1] RCAST, Univ. Tokyo; [2] RCAST, Univ. of Tokyo; [3] NIES; [4] RCAST, Univ of Tokyo; [5] Earth and Planetary Sci., Univ. of Tokyo

Simulations of particulate nitrate (NO₃⁻) by three dimensional chemical transport models (3-D CTM) are generally difficult mainly because there are large uncertainties in the production and removal rates of NO₃⁻ and nitric acid (HNO₃). Time-resolved (1 min - 1 h) measurements of HNO₃, NO₃⁻, and other important gas and aerosol species were conducted at an urban site in Tokyo in winter and summer of 2004. Intensive measurements were also conducted at a suburban (downwind) site during the summer of 2004. In this study, a 3-D CTM (CMAQ) is used to simulate the production, transport, and removal processes of HNO₃ and NO₃⁻ concentrations. The sensitivities of the total nitrate (TNO₃ = HNO₃ + NO₃⁻) concentrations on the N₂O₅ uptake coefficient on aerosol particles, g_{N2O5} , and HNO₃ dry deposition velocity, $v_{d,HNO3}$, are assessed. This analysis indicates that g_{N2O5} and $v_{d,HNO3}$ are critical parameters in predicting TNO₃ concentrations. The loss rate of total reactive nitrogen (NO_y) was dominated by the removal of TNO₃. We evaluated the removal processes of TNO₃ by using remaining fraction of NO_y (R(NO_y)), which is defined as the dNO_y/dCO ratio normalized by the NO_x/CO emission ratio. The base case simulation largely overestimates R(NO_y). We have found that the model well reproduces the observed R(NO_y) when the dry deposition velocity of TNO₃ is increased by a factor of 5. This result suggests a need for improving the removal scheme of TNO₃ in current CTMs.