Room: 201B

Developing micro-Raman mass spectrometry for measuring carbon isotopic composition of carbon dioxide

Masashi Arakawa[1]; Junji Yamamoto[2]; Hiroyuki Kagi[1]

[1] Geochem. Lab., Grad. School Sci. Univ. Tokyo; [2] BGRL

We investigated the applicability of micro-Raman spectroscopy for determining carbon isotopic compositions $({}^{13}C/{}^{12}C)$ of minute CO₂ fluid inclusions in minerals. This method is nondestructive and has sufficiently high spatial resolution (1 micron) to measure each fluid inclusion independently. Raman spectra of CO₂ fluid have ${}^{12}CO_2$ -origin peaks at about 1285 cm⁻¹ and 1389 cm⁻¹ (n^[12] and n^[12]) and a ${}^{13}CO_2$ -origin peak at about 1370 cm⁻¹ (n^[13]). The relationship between carbon isotopic compositions and peak intensity ratios of n^[12] and n^[13], was calibrated. Considering several factors affecting the peak intensity ratio, the error in obtained carbon isotopic composition was 2%. The reproducibility of intensity ratio at the same experimental environment was 0.5%. Within these error values, we can distinguish biogenic CO₂ from abiogenic CO₂.

We will report on application of micro-Raman mass spectroscopy to several natural fluid inclusions.