The study of portlandite, $\mathrm{Ca}(\mathrm{OH}) 2$, under high pressure by FT-IR observation and single crystal X-ray diffraction

\# Kenshi Takahara[1]; Takahiro Kuribayashi[2]; Yasuhiro Kudoh[3]

[1] Earth Sci,Tohoku Univ; [2] Tohoku Univ.; [3] Tohoku Univ

The study of portlandite, $\mathrm{Ca}(\mathrm{OH})_{2}$, under high pressure at ambient temperature was carried out by FT-IR observation and single crystal X-ray diffraction. Single crystals of portlandite were synthesized by the reaction of 2 NaOH aq and CaCl_{2} aq. IR spectra of the portlandite up to 8.8 GPa were measured by FT-IR microspectrometer. The unit cell parameters and the data sets of X-ray diffraction intensity of portlandite up to 5.7 GPa were measured with an auto-mated four-circle X-ray diffractometer (Rigaku,AFC-7S). The X-ray oscillation photographs were taken at $5.5,8.3$ and 3.0 GPa using synchrotron radiation with a four-circle diffractometer at the beam line BL-10A, Photon Factory, High Energy Accelerator Research Organization, Tsukuba, Japan.

The IR absorption peak of OH stretching motion was observed at $3638 \mathrm{~cm}^{-1}$ at 0.4 GPa . As increasing pressure, this peak shifted to the lower wavenumber at the rate of $-3.56(9) \mathrm{cm}^{-1} \mathrm{GPa}^{-1}$. This result indicates enhancement of hydrogen bonding between layers. The isothermal bulk modulus of portlandite, calculated using the Birch-Murnaghan equation of state, was $\mathrm{K}_{0}=34.2(9) \mathrm{GPa}$ assuming $\mathrm{K}_{0}{ }^{\prime}=4$. The linear compressibility of c axis $\left(12.63(2) * 10^{-3} \mathrm{GPa}^{-1}\right)$ is approximately 2.7 times as large as that of a axis $\left(4.71(3) * 10^{-3} \mathrm{GPa}^{-1}\right)$. Crystal structure of portlandite at $0.0001,0.3,1.7,3.1,3.5,4.5,5.0,5.1,5.3$, $5.5,5.7 \mathrm{GPa}$ were refined, yielding $\mathrm{R}=3.8,3.8,3.7,3.5,5.0,8.6,3.9,5.7,8.2,4.7,8.1$ respectively. Calcium atom vibrates anisotropically, but oxygen atom isotropically at all the pressure points in this X-ray diffraction study. Pressure dependence of temperature factor of Calcium and oxygen atom was confirmed. X-ray diffraction intensity data set of portlandite were collected at 5.7 GPa , but no diffraction spots of sample were observed over 6.2 GPa . On reducing pressure, diffraction spots of portlandite were recovered. This phenomenon means that portlandite shows a reversible transformation from crystal to a glass state around 6 GPa .

