L133-007 Room: 101A Time: May 22 10:19-10:30

Summertime CO₂ source in the eastern Bering Sea shelf

Akihiko Murata[1]; Naomi Harada[2]

[1] JAMSTEC; [2] JAMSTEC, IORGC

In the summers of the years 1998 to 2002, 2004 and 2006, we conducted shipboard observations of atmospheric and surface seawater pCO_2 in the eastern Bering Sea shelf. At latitudes 57 - 63N, surface seawater pCO_2 was elevated up to about 450 micro atm, meaning that the area acted as a source for atmospheric CO_2 . South of 57N, however, surface seawater pCO_2 was reduced to be 150 micro atm, meaning a strong sink for atmospheric CO_2 . The reduced surface seawater pCO_2 was associated with depleted nitrate and reduced silicate, suggesting diatom activity. Although the depletion of nitrate and reduction of silicate were observed also at latitudes 57 - 63N, surface seawater pCO_2 (total CO_2 also) was elevated. Since the pCO_2 elevation corresponded with blooms of coccolithophorid Emiliania huxleyi, it was expected that the pCO_2 was elevated by the blooms. The fact that the pCO_2 elevation was found also in the years when the bloom did not occur demonstrates that there are no cause-and-effect relationships between the blooms and the pCO_2 elevation. We chiefly attributed the pCO_2 elevation to river discharge.

In the presentation, we intend to discuss carbon budget in the eastern Bering Sea shelf.