Setting of Na-alteration in a type B2 Ca-Al-rich inclusion from the Allende CV3 chondrite

\# Timothy Fagan[1]; Mikiko Kudou[1]
[1] Earth Sciences, Waseda Univ.
http://www.dept.edu.waseda.ac.jp/earth/index_j.html

Ca-Al-rich inclusions (CAIs) in chondritic meteorites are recognized as primitive rocks with petrologic and isotopic records of high-temperature interactions between gas and condensed phases in the solar nebula. Many CAIs have also undergone lowtemperature alteration, which may have occurred in their asteroidal parent bodies, or during earlier thermal events in the solar nebula, or in both nebular and parent-body settings. Determining the settings of alteration and thermal histories of CAIs remain major goals for understanding the formation and re-processing of rocks in the solar nebula and parent bodies.

This study focuses on the Na-alteration of melilite in a type B2 CAI (4022-1) from the CV3 chondrite Allende. Melilite with high $\mathrm{Na}_{2} \mathrm{O}(0.28 \mathrm{wt} \%)$ and $\mathrm{FeO}(0.32 \mathrm{wt} \%)$ contents was discovered near the margin of this CAI. Yet, within 30 micrometers, both $\mathrm{Na}_{2} \mathrm{O}$ and FeO are below electron microprobe analysis (EPMA) detection limits ($0.03 \mathrm{wt} \%$ for $\mathrm{Na}_{2} \mathrm{O}$ and $0.08 \mathrm{wt} \%$ for FeO). This discovery prompted a search for correlations between $\mathrm{Na}_{2} \mathrm{O}, \mathrm{FeO}$ and akermanite (Ak) content and location within this CAI.

Methods: Three sets of melilite analyses were collected: (1) near the rim of CAI 4022-1, where the secondary minerals grossular, secondary anorthite, FeO-bearing spinel and feldspathoids are abundant; (2) at randomly selected sites throughout the CAI; (3) at sites throughout the core and rim of a type B1 CAI (CGI-10, see [1]) from Efremovka. Back-scattered electron (BSE) images and quantitative EPMA were collected using the JEOL JXA-8900 electron microprobe at Waseda University. Analyses were conducted by WDS using a 15 kV focused beam with currents of 10 nA or 20 nA , and counting times of 10 s on peak and background. Oxides and silicates were used as standards.

Results and Discussion: Melilite with elevated $\mathrm{Na}_{2} \mathrm{O}(0.15 \mathrm{wt} \%)$ and $\mathrm{FeO}(0.2 \mathrm{wt} \%)$ occur throughout the Allende type B2 CAI (4022-1), though the highest $\mathrm{Na}_{2} \mathrm{O}$ - and FeO -contents (0.40 and $0.36 \mathrm{wt} \%$, respectively) occur near the CAI margin. Comparable compositions are present near the rim of the Efremovka type B1 CAI (CGI-10), but melilite in the interior of CGI-10 is relatively depleted in Na 2 O and FeO . Most analyses show a correlation between Na 2 O and Ak -content; however, several exceptions to this trend occur near the margin of CAI 4022-1. Iron and $\mathrm{Na}_{2} \mathrm{O}$ concentrations show a positive correlation for the CGI-10 and 4022-1 near-rim analyses, but no correlation between $\mathrm{Na}_{2} \mathrm{O}$ and FeO was detected for the analyses collected throughout 4022-1.

The two $\mathrm{Na}_{2} \mathrm{O}$ vs. FeO trends indicate two mechanisms for alteration of CAI 4022-1 melilite. The positive correlation between $\mathrm{Na}_{2} \mathrm{O}$ and FeO in melilite near the CAI rim suggests that this alteration was coincident with formation of feldspathoids and FeO -bearing secondary minerals along the margin of the CAI. Sodium and Fe may have been incorporated into melilite by a combination of fluid-assisted diffusion and local recrystallization. Exceptions to the $\mathrm{Na}_{2} \mathrm{O}-\mathrm{Ak}$ correlation are gehelenitic melilites that occur near the CAI rim and incorporated $\mathrm{Na}_{2} \mathrm{O}$ during this alteration event. A similar event affected melilite in Efremovka CGI-10.

Sodium and FeO are uncorrelated in melilite in the interior of CAI 4022-1. Our favored hypothesis for alteration of this melilite depends on an early Na -alteration event in the solar nebula followed by incomplete melilite melting, recrystallization and diffusive relaxation [2-4]. This model accounts for the efficient dispersal of Na to melilite throughout the CAI.

References: [1] Fagan T.J. et al. 2004 Meteorit. Planet. Sci. 39: 1257-1272. [2] MacPherson G.J. and Davis A.M. 1993 Geochim. Cosmochim. Acta 57: 231-243. [3] Beckett J.R. et al. 2000 Geochim. Cosmochim. Acta 64: 2519-2534. [4] Simon S.B. and Grossman L. 2006 Meteorit. Planet. Sci. 39: 1257-1272.

