Mass-dependent and radiogenic isotope variation of Sr in the Neoproterozoic Doushantuo Formation

Takeshi Ohno[1]; Tsuyoshi Komiya[2]; Yuichiro Ueno[3]; Takafumi Hirata[4]; Shigenori Maruyama[5]

[1] Earth and Planetary Sciences, Tokyo Institute of Technology; [2] Earth & Planet. Sci., Tokyo Inst. Tech.; [3] Global Edge Inst., Tokyo Tech.; [4] Earth and Planetary Sci., TITech; [5] Earth and Planetary Sci., Tokyo Institute of Technology

We measured both mass-dependent isotope fractionation of d⁸⁸Sr (⁸⁸Sr/⁸⁶Sr) and radiogenic isotopic variation of Sr (⁸⁷Sr/⁸⁶Sr) for the Neoproterozoic Doushantuo Formation that deposited as a cap carbonate immediately above the Marinoan-related Nantuo Tillite. The d⁸⁸Sr and ⁸⁷Sr/⁸⁶Sr compositions showed three remarkable characteristics: (1) high radiogenic ⁸⁷Sr/⁸⁶Sr values and gradual decrease in the ⁸⁷Sr/⁸⁶Sr ratios, (2) anomalously low d⁸⁸Sr values at the lower part cap carbonate, and (3) a clear correlation between ⁸⁷Sr/⁸⁶Sr and d⁸⁸Sr values. These isotopic signatures can be explained by assuming an extreme greenhouse condition after the Marinoan glaciation. Surface seawater, mixed with a large amount of freshwater from continental crusts with high ⁸⁷Sr/⁸⁶Sr and lighter d⁸⁸Sr ratios, was formed during the extreme global warming after the glacial event. High atmospheric CO2 content caused sudden precipitation of cap carbonate from the surface seawater with high ⁸⁷Sr/⁸⁶Sr and lighter d⁸⁸Sr ratios, probably caused gradual decrease of the ⁸⁷Sr/⁸⁶Sr ratios of the seawater and deposition of carbonate with normal d⁸⁸Sr ratios. The combination of ⁸⁷Sr/⁸⁶Sr and d⁸⁸Sr isotope systematics gives us new insights on the surface evolution after the Snowball Earth.