E114-P017 Room: Poster Session Hall Time: May 27

Transient response characteristics of phase detection type impedance probe

Makoto Wakabayashi[1]; Takayuki Ono[2]; Tomonori Suzuki[3]

[1] Niihama-N.C.T.; [2] Department of Astronomy and Geophysics, Tohoku Univ.; [3] Dep. of Geophys, Graduate School of Sci., Tohoku Univ.

The impedance probe has been used for over 40 years, to obtain the absolute value of electron density in space plasma with high accuracy (Oya, 1966). In association with two campaign observations, in-situ measurements of electron density by using impedance probe have been successfully carried out. Moreover, a phase detection type impedance probe method has been developed to realize a continuous observation of the plasma density.

In the previous instrumentation for the in-situ observations such as SEEK-2 in 2002 and DELTA in 2004 (namely, ordinary type impedance probe), the impedance probe showed an observation limit that it could not detect the fine structure of plasma irregularity due to the plasma instabilities. Detection of fine structure of the plasma density becomes very much important to understand the physical processes generated in the ionosphere. So, accurate observation of fine structure of plasma distribution with absolute value is essential to study the electro-dynamics in the ionosphere.

We tried to develop the phase detection type impedance probe by using PLL (Phase Locked Loop) method. The methodology of phase detection type was confirmed in laboratory and space science chamber. Based on these experiments, we clarified that it was possible to detect the phase shift at UHR and SHR frequencies. We achieved to make the continuous detection of UHR frequency by using the PLL operation. In comparison with the ordinary type impedance probe, it was shown that the locked frequency changed in correspondence with the electron density variation inside the space chamber. The UHR frequency indicated by phase detection type showed lower value (11 % at most) than the UHR detected by the ordinary type. The time resolution of UHR frequency was estimated about 6.25 ms. However, transient response of phase detection type shold be improved to obtain the electron density structure with steep gradient.