リートベルト解析による CaRuO3 ポストペロブスカイトの構造精密化

Rietveld refinement of post-perovskite-type CaRuO3

糀谷浩[1]; 白子雄一[1]; 赤荻正樹[1] # Hiroshi Kojitani[1]; Yuichi Shirako[1]; Masaki Akaogi[1]

[1] 学習院大・理

[1] Dept. of Chem., Gakushuin Univ.

近年、Murakami et al. (2004) により MgSiO₃ ペロブスカイトが約 125 GPa, 2200 C で CaIrO₃ 型のポストペロブスカ イト構造に相転移することが報告された。その相転移条件が、D"層での地震波不連続と調和的であるためポストペロブ スカイトに関する多くの研究がなされるようになってきた。しかしながら、MgSiO₃ ポストペロブスカイトが 100 GPa を 超える超高圧下で安定であることや、1 気圧下へ急冷回収することが不可能であることのため、その詳細についてはまだ 明らかになっていない。このため、ポストペロブスカイトについての物性や相転移機構を詳しく知るために、より低圧で ポストペロブスカイト転移を起こすアナログ物質を使った比較結晶化学的研究が有効となる。これまでに、CaIrO₃ 以外 に MgGeO₃, MnGeO₃, NaMgF₃ 等がポストペロブスカイト相転移を起こすことが分かっている。しかし、それらの化合 物のポストペロブスカイト相は常圧常温下に急冷回収できないことが報告されている。したがって、さらなるポストペ ロブスカイト構造を持つ化合物の探索が必要であった。本研究では、CaRuO₃ ペロブスカイトの高圧回収試料が、CaIrO₃ ポストペロブスカイトに非常に類似した粉末 X 線回折パターンを示すことが明らかとなったため、その CaRuO₃ 新高圧 相についてリートベルト法により結晶構造の精密化を行った。

高圧実験には、学習院大学理学部設置のタングステンカーバイドアンビル(先端径 2.5 mm)を用いた川井型高圧発 生装置を使用した。出発物質の CaRuO₃ ペロブスカイトは、試薬の CaCO₃ と RuO₂ をモル比 1:1 で混合し、ペレット にしたものを大気中,1150 C で 14 時間加熱して合成した。CaRuO₃ 新高圧相は、出発物質の CaRuO₃ ペロブスカイト を 23 GPa,950 C で 1 時間保持後、急冷することにより合成された。粉末 X 線回折パターンは、リガク RINT2500V(Cr Kalpha,45 kV,250 mA)を用いて取得した。2theta 範囲は 20 - 140 degree、ステップは 0.02 degree であった。選択配向 の効果を減らすため、石英無反射板上に付着させたスプレーのりの薄層上に粉末試料を散布した。リートベルト解析に は、RIETAN-2000 プログラムを用いた。結晶構造モデルには、 CaIrO₃ ポストペロブスカイトの構造を使用した。

新高圧相のリートベルト解析の結果、最終の R_{wp} 因子が 8.1 %となったことから、結晶構造がポストペロブスカイト構造であることが示された。格子定数は a = 3.1150(1) A, b = 9.8268(1) A, c = 7.2963(1) A と決定された。平均 Ca-O 距離 2.436 A であり、CaIrO₃ ポストペロブスカイト中の平均 Ca-O 距離 2.445 A とばらつきの範囲で同じであった。一方、CaRuO₃ ポストペロブスカイトの平均 Ru-O 距離 (2.008 A) は CaIrO₃ ポストペロブスカイトの平均 Ir-O 距離 (2.024 A) よりも約 0.01 A 小さい。これは、酸素 6 配位での Ru⁴⁺ のイオン半径が Ir⁴⁺ よりも 0.01 A 程度小さいことと調和的である。また、CaRuO₃ ポストペロブスカイトの結合角に関しては、CaIrO₃ ポストペロブスカイトのものとほぼ同じである結果が得られた。