Fluctuation frequency of oxygen isotope reservoirs in the early solar system

Shoichi Itoh[1]; Hisayoshi Yurimoto[1]

[1] Natural History Sci., Hokudai

It is generally accepted that the refractory inclusions (Ca-Al-rich inclusion (CAI)) are the oldest materials in the solar system (4567Ma, Amelin et al., 2002). In addition, since the CAI contains the radiogenic ²⁶Al, the CAI formed at first several Myrs in the early solar system.

For the oxygen isotope distribution of coarse-grained Ca-Al-rich inclusion (CAI), in general, the ¹⁶O-rich phases are spinel and fassaite and the ¹⁶O-poor phases are melilite and anorthite (e.g., Clayton, 1993). To explain the heterogeneous oxygen isotopic distribution among the minerals, recently, the following crystallization sequence has been proposed by the results of O isotopic petrography in type A 7R19-1 (a) CAI from Allende CV3 chondrite with the evidence of coexistence among ¹⁶O-rich and 16O-poor melilite crystals (e.g., Yurimoto et al., 1998). Initially, this CAI crystallized from ¹⁶O-rich CAI liquid, which the crystallization sequence of the CAI minerals is the order of spinel, melilite and fassaite. Secondly, this CAI experienced partial melting in ¹⁶O-poor gas. Following O isotopic exchange reaction between ¹⁶O-rich liquid and ¹⁶O-poor gas, melilite and fassaite recrystallized from the ¹⁶O-poor liquid. However, such O isotopic petrography has not been evaluated by chronology.

In this study, we report a high precision Al-Mg isotopic study of coarse-grained CAIs from Y81020 CO chondrite and Allende CV chondrites, in order to evaluate the chronological sequence of ¹⁶O-rich and -poor isotope exchange event using ²⁶Al-²⁶Mg internal isochron.

We measured Mg isotopes of three coarse-grained CAIs, which is a fragment of type A Y20a CAI from Y81020 CO chondrite, a fragment of type A 7R-19-1 (a) CAI and a type B HN3-1 CAI from Allende CV chondrite. The study of O isotopic petrography of 7R-19-1 (a) and HN3-1 from Allende has been reported previously (e.g., Yurimoto et al., 1998). Al-Mg isotopic analysis was performed by the Cameca ims-1270 SIMS instrument using four faraday cups of the multi-collection system (Itoh et al., 2007).

In 7R-19-1(a) CAI, the timing of heating events for 16 O-rich and 16 O-poor phases are clearly distinguishable and the time interval is about 0.23+-0.11Myr.

In Y20a CAI, at least five flash multiple heating events occurred from the internal Al-Mg isochron. Remarkable fact from the result of Y20a shows that the dynamical O isotopic fluctuation from ¹⁶O-rich to ¹⁶O-poor, and then ¹⁶O-rich WR-rim formation event occurred within ~0.5Myr in the early solar system. In addition, the relative age of interior ¹⁶O-poor melilite and ¹⁶O-rich outer melilite in Y20a shows that the O isotopic exchange events occurred within analytical uncertainty (less than 0.01Myr).

In HN3 CAI, the timing of heating events for ¹⁶O-rich and ¹⁶O-poor phases are not clearly distinguishable and at least two heating events occurred with O isotope fluctuation.

The time interval among heating events is less than 0.1Ma.

If the spatial heterogeneity of ²⁶Al exists in the early solar system, it could not be acceptable to compare with these isochron from all CAIs. However, each internal isochron from a CAI is not related with the heterogeneity of ²⁶Al in the early solar system or not. Therefore, the duration of CAI formation from each internal isochron is varied, and in Y20a CAI, at least shows the duration of CAI formation about 0.5Myr. In addition, the ¹⁶O-rich and ¹⁶O-poor gaseous nebular reservoirs exist in the early solar system during Y20a CAI formation. Although it is unclear whether two isotopic different environments continue to exist in the early solar system, the O isotopic compositions of gaseous nebular reservoirs surrounding each CAI fluctuated from ¹⁶O-rich to ¹⁶O-poor or ¹⁶O-poor to ¹⁶O-rich, and it takes less than 0.01Myr times to switch the fluctuation of oxygen isotope reservoirs in the case of Y20a CAI.